IMPACT OF AVIATION ON CLIMATE: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II

Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO₂ climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO₂ aircraft emissions are examined u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2016-04, Vol.97 (4), p.561-584
Hauptverfasser: Brasseur, Guy P., Gupta, Mohan, Anderson, Bruce E., Balasubramanian, Sathya, Barrett, Steven, Duda, David, Fleming, Gregg, Forster, Piers M., Fuglestvedt, Jan, Gettelman, Andrew, Halthore, Rangasayi N., Jacob, S. Daniel, Jacobson, Mark Z., Khodayari, Arezoo, Liou, Kuo-Nan, Lund, Marianne T., Miake-Lye, Richard C., Minnis, Patrick, Olsen, Seth, Penner, Joyce E., Prinn, Ronald, Schumann, Ulrich, Selkirk, Henry B., Sokolov, Andrei, Unger, Nadine, Wolfe, Philip, Wong, Hsi-Wu, Wuebbles, Donald W., Yi, Bingqi, Yang, Ping, Zhou, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 4
container_start_page 561
container_title Bulletin of the American Meteorological Society
container_volume 97
creator Brasseur, Guy P.
Gupta, Mohan
Anderson, Bruce E.
Balasubramanian, Sathya
Barrett, Steven
Duda, David
Fleming, Gregg
Forster, Piers M.
Fuglestvedt, Jan
Gettelman, Andrew
Halthore, Rangasayi N.
Jacob, S. Daniel
Jacobson, Mark Z.
Khodayari, Arezoo
Liou, Kuo-Nan
Lund, Marianne T.
Miake-Lye, Richard C.
Minnis, Patrick
Olsen, Seth
Penner, Joyce E.
Prinn, Ronald
Schumann, Ulrich
Selkirk, Henry B.
Sokolov, Andrei
Unger, Nadine
Wolfe, Philip
Wong, Hsi-Wu
Wuebbles, Donald W.
Yi, Bingqi
Yang, Ping
Zhou, Cheng
description Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO₂ climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO₂ aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOₓ emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOₓ–O₃–CH₄ interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO₂ climate impacts—an important metric that informs decision-making.
doi_str_mv 10.1175/bams-d-13-00089.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877844005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26243303</jstor_id><sourcerecordid>26243303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8e00e11839e6acab4dfa6a2dfab09ade61e76a656832961cce425d5bb9f380f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gIdCwYuX1Jn93mOMrQZaKxi8LptkAy1tU7PtwX_vthUPHoRhPp8ZhpeQW4QRohIPpVuHpE6QJQCgzQjPSA8FhQS4UuekF7vHkbokVyEsDyXT2CODfPaWZsVwPhmmH3la5PPXYbRsms_SYnxNLhq3Cv7mJ_ZJMRkX2UsynT_nWTpNKi7FLtEewCNqZrx0lSt53TjpaPQlGFd7iV5JJ4XUjBqJVeU5FbUoS9MwDQ3rk_vT2W3Xfu592Nn1IlR-tXIb3-6DRa2U5hxARPTuD7ps990mPmepBiokBan-o1Bpw41RBiKFJ6rq2hA639htt1i77ssi2IOq9jGdvdsni8weVY1JnwxOO8uwa7vfBSopZyxq-g0GeW68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789499790</pqid></control><display><type>article</type><title>IMPACT OF AVIATION ON CLIMATE: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brasseur, Guy P. ; Gupta, Mohan ; Anderson, Bruce E. ; Balasubramanian, Sathya ; Barrett, Steven ; Duda, David ; Fleming, Gregg ; Forster, Piers M. ; Fuglestvedt, Jan ; Gettelman, Andrew ; Halthore, Rangasayi N. ; Jacob, S. Daniel ; Jacobson, Mark Z. ; Khodayari, Arezoo ; Liou, Kuo-Nan ; Lund, Marianne T. ; Miake-Lye, Richard C. ; Minnis, Patrick ; Olsen, Seth ; Penner, Joyce E. ; Prinn, Ronald ; Schumann, Ulrich ; Selkirk, Henry B. ; Sokolov, Andrei ; Unger, Nadine ; Wolfe, Philip ; Wong, Hsi-Wu ; Wuebbles, Donald W. ; Yi, Bingqi ; Yang, Ping ; Zhou, Cheng</creator><creatorcontrib>Brasseur, Guy P. ; Gupta, Mohan ; Anderson, Bruce E. ; Balasubramanian, Sathya ; Barrett, Steven ; Duda, David ; Fleming, Gregg ; Forster, Piers M. ; Fuglestvedt, Jan ; Gettelman, Andrew ; Halthore, Rangasayi N. ; Jacob, S. Daniel ; Jacobson, Mark Z. ; Khodayari, Arezoo ; Liou, Kuo-Nan ; Lund, Marianne T. ; Miake-Lye, Richard C. ; Minnis, Patrick ; Olsen, Seth ; Penner, Joyce E. ; Prinn, Ronald ; Schumann, Ulrich ; Selkirk, Henry B. ; Sokolov, Andrei ; Unger, Nadine ; Wolfe, Philip ; Wong, Hsi-Wu ; Wuebbles, Donald W. ; Yi, Bingqi ; Yang, Ping ; Zhou, Cheng</creatorcontrib><description>Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO₂ climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO₂ aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOₓ emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOₓ–O₃–CH₄ interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO₂ climate impacts—an important metric that informs decision-making.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/bams-d-13-00089.1</identifier><identifier>CODEN: BAMIAT</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Aircraft ; Alternative fuels ; Atmosphere ; Atmospheric chemistry ; Atmospheric models ; Aviation ; Black carbon ; Carbon aerosols ; Carbon dioxide ; Carbon dioxide emissions ; Chemistry ; Cirrus clouds ; Civil aviation ; Climate change ; Climate change research ; Contrails ; Decision making ; Emissions ; Environmental impact ; Global climate ; Mitigation ; Nitrogen compounds ; Nitrogen oxides ; Nitrogen oxides emissions ; Ozone ; Portfolio management ; Radiative forcing ; Renewable fuels ; Stratosphere ; Sulfates</subject><ispartof>Bulletin of the American Meteorological Society, 2016-04, Vol.97 (4), p.561-584</ispartof><rights>Copyright 2016, American Meteorological Society (AMS)</rights><rights>Copyright American Meteorological Society Apr 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8e00e11839e6acab4dfa6a2dfab09ade61e76a656832961cce425d5bb9f380f3</citedby><cites>FETCH-LOGICAL-c465t-8e00e11839e6acab4dfa6a2dfab09ade61e76a656832961cce425d5bb9f380f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243303$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243303$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Brasseur, Guy P.</creatorcontrib><creatorcontrib>Gupta, Mohan</creatorcontrib><creatorcontrib>Anderson, Bruce E.</creatorcontrib><creatorcontrib>Balasubramanian, Sathya</creatorcontrib><creatorcontrib>Barrett, Steven</creatorcontrib><creatorcontrib>Duda, David</creatorcontrib><creatorcontrib>Fleming, Gregg</creatorcontrib><creatorcontrib>Forster, Piers M.</creatorcontrib><creatorcontrib>Fuglestvedt, Jan</creatorcontrib><creatorcontrib>Gettelman, Andrew</creatorcontrib><creatorcontrib>Halthore, Rangasayi N.</creatorcontrib><creatorcontrib>Jacob, S. Daniel</creatorcontrib><creatorcontrib>Jacobson, Mark Z.</creatorcontrib><creatorcontrib>Khodayari, Arezoo</creatorcontrib><creatorcontrib>Liou, Kuo-Nan</creatorcontrib><creatorcontrib>Lund, Marianne T.</creatorcontrib><creatorcontrib>Miake-Lye, Richard C.</creatorcontrib><creatorcontrib>Minnis, Patrick</creatorcontrib><creatorcontrib>Olsen, Seth</creatorcontrib><creatorcontrib>Penner, Joyce E.</creatorcontrib><creatorcontrib>Prinn, Ronald</creatorcontrib><creatorcontrib>Schumann, Ulrich</creatorcontrib><creatorcontrib>Selkirk, Henry B.</creatorcontrib><creatorcontrib>Sokolov, Andrei</creatorcontrib><creatorcontrib>Unger, Nadine</creatorcontrib><creatorcontrib>Wolfe, Philip</creatorcontrib><creatorcontrib>Wong, Hsi-Wu</creatorcontrib><creatorcontrib>Wuebbles, Donald W.</creatorcontrib><creatorcontrib>Yi, Bingqi</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><title>IMPACT OF AVIATION ON CLIMATE: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II</title><title>Bulletin of the American Meteorological Society</title><description>Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO₂ climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO₂ aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOₓ emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOₓ–O₃–CH₄ interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO₂ climate impacts—an important metric that informs decision-making.</description><subject>Aerosols</subject><subject>Aircraft</subject><subject>Alternative fuels</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Aviation</subject><subject>Black carbon</subject><subject>Carbon aerosols</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Chemistry</subject><subject>Cirrus clouds</subject><subject>Civil aviation</subject><subject>Climate change</subject><subject>Climate change research</subject><subject>Contrails</subject><subject>Decision making</subject><subject>Emissions</subject><subject>Environmental impact</subject><subject>Global climate</subject><subject>Mitigation</subject><subject>Nitrogen compounds</subject><subject>Nitrogen oxides</subject><subject>Nitrogen oxides emissions</subject><subject>Ozone</subject><subject>Portfolio management</subject><subject>Radiative forcing</subject><subject>Renewable fuels</subject><subject>Stratosphere</subject><subject>Sulfates</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gIdCwYuX1Jn93mOMrQZaKxi8LptkAy1tU7PtwX_vthUPHoRhPp8ZhpeQW4QRohIPpVuHpE6QJQCgzQjPSA8FhQS4UuekF7vHkbokVyEsDyXT2CODfPaWZsVwPhmmH3la5PPXYbRsms_SYnxNLhq3Cv7mJ_ZJMRkX2UsynT_nWTpNKi7FLtEewCNqZrx0lSt53TjpaPQlGFd7iV5JJ4XUjBqJVeU5FbUoS9MwDQ3rk_vT2W3Xfu592Nn1IlR-tXIb3-6DRa2U5hxARPTuD7ps990mPmepBiokBan-o1Bpw41RBiKFJ6rq2hA639htt1i77ssi2IOq9jGdvdsni8weVY1JnwxOO8uwa7vfBSopZyxq-g0GeW68</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Brasseur, Guy P.</creator><creator>Gupta, Mohan</creator><creator>Anderson, Bruce E.</creator><creator>Balasubramanian, Sathya</creator><creator>Barrett, Steven</creator><creator>Duda, David</creator><creator>Fleming, Gregg</creator><creator>Forster, Piers M.</creator><creator>Fuglestvedt, Jan</creator><creator>Gettelman, Andrew</creator><creator>Halthore, Rangasayi N.</creator><creator>Jacob, S. Daniel</creator><creator>Jacobson, Mark Z.</creator><creator>Khodayari, Arezoo</creator><creator>Liou, Kuo-Nan</creator><creator>Lund, Marianne T.</creator><creator>Miake-Lye, Richard C.</creator><creator>Minnis, Patrick</creator><creator>Olsen, Seth</creator><creator>Penner, Joyce E.</creator><creator>Prinn, Ronald</creator><creator>Schumann, Ulrich</creator><creator>Selkirk, Henry B.</creator><creator>Sokolov, Andrei</creator><creator>Unger, Nadine</creator><creator>Wolfe, Philip</creator><creator>Wong, Hsi-Wu</creator><creator>Wuebbles, Donald W.</creator><creator>Yi, Bingqi</creator><creator>Yang, Ping</creator><creator>Zhou, Cheng</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20160401</creationdate><title>IMPACT OF AVIATION ON CLIMATE</title><author>Brasseur, Guy P. ; Gupta, Mohan ; Anderson, Bruce E. ; Balasubramanian, Sathya ; Barrett, Steven ; Duda, David ; Fleming, Gregg ; Forster, Piers M. ; Fuglestvedt, Jan ; Gettelman, Andrew ; Halthore, Rangasayi N. ; Jacob, S. Daniel ; Jacobson, Mark Z. ; Khodayari, Arezoo ; Liou, Kuo-Nan ; Lund, Marianne T. ; Miake-Lye, Richard C. ; Minnis, Patrick ; Olsen, Seth ; Penner, Joyce E. ; Prinn, Ronald ; Schumann, Ulrich ; Selkirk, Henry B. ; Sokolov, Andrei ; Unger, Nadine ; Wolfe, Philip ; Wong, Hsi-Wu ; Wuebbles, Donald W. ; Yi, Bingqi ; Yang, Ping ; Zhou, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8e00e11839e6acab4dfa6a2dfab09ade61e76a656832961cce425d5bb9f380f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerosols</topic><topic>Aircraft</topic><topic>Alternative fuels</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Aviation</topic><topic>Black carbon</topic><topic>Carbon aerosols</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Chemistry</topic><topic>Cirrus clouds</topic><topic>Civil aviation</topic><topic>Climate change</topic><topic>Climate change research</topic><topic>Contrails</topic><topic>Decision making</topic><topic>Emissions</topic><topic>Environmental impact</topic><topic>Global climate</topic><topic>Mitigation</topic><topic>Nitrogen compounds</topic><topic>Nitrogen oxides</topic><topic>Nitrogen oxides emissions</topic><topic>Ozone</topic><topic>Portfolio management</topic><topic>Radiative forcing</topic><topic>Renewable fuels</topic><topic>Stratosphere</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brasseur, Guy P.</creatorcontrib><creatorcontrib>Gupta, Mohan</creatorcontrib><creatorcontrib>Anderson, Bruce E.</creatorcontrib><creatorcontrib>Balasubramanian, Sathya</creatorcontrib><creatorcontrib>Barrett, Steven</creatorcontrib><creatorcontrib>Duda, David</creatorcontrib><creatorcontrib>Fleming, Gregg</creatorcontrib><creatorcontrib>Forster, Piers M.</creatorcontrib><creatorcontrib>Fuglestvedt, Jan</creatorcontrib><creatorcontrib>Gettelman, Andrew</creatorcontrib><creatorcontrib>Halthore, Rangasayi N.</creatorcontrib><creatorcontrib>Jacob, S. Daniel</creatorcontrib><creatorcontrib>Jacobson, Mark Z.</creatorcontrib><creatorcontrib>Khodayari, Arezoo</creatorcontrib><creatorcontrib>Liou, Kuo-Nan</creatorcontrib><creatorcontrib>Lund, Marianne T.</creatorcontrib><creatorcontrib>Miake-Lye, Richard C.</creatorcontrib><creatorcontrib>Minnis, Patrick</creatorcontrib><creatorcontrib>Olsen, Seth</creatorcontrib><creatorcontrib>Penner, Joyce E.</creatorcontrib><creatorcontrib>Prinn, Ronald</creatorcontrib><creatorcontrib>Schumann, Ulrich</creatorcontrib><creatorcontrib>Selkirk, Henry B.</creatorcontrib><creatorcontrib>Sokolov, Andrei</creatorcontrib><creatorcontrib>Unger, Nadine</creatorcontrib><creatorcontrib>Wolfe, Philip</creatorcontrib><creatorcontrib>Wong, Hsi-Wu</creatorcontrib><creatorcontrib>Wuebbles, Donald W.</creatorcontrib><creatorcontrib>Yi, Bingqi</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brasseur, Guy P.</au><au>Gupta, Mohan</au><au>Anderson, Bruce E.</au><au>Balasubramanian, Sathya</au><au>Barrett, Steven</au><au>Duda, David</au><au>Fleming, Gregg</au><au>Forster, Piers M.</au><au>Fuglestvedt, Jan</au><au>Gettelman, Andrew</au><au>Halthore, Rangasayi N.</au><au>Jacob, S. Daniel</au><au>Jacobson, Mark Z.</au><au>Khodayari, Arezoo</au><au>Liou, Kuo-Nan</au><au>Lund, Marianne T.</au><au>Miake-Lye, Richard C.</au><au>Minnis, Patrick</au><au>Olsen, Seth</au><au>Penner, Joyce E.</au><au>Prinn, Ronald</au><au>Schumann, Ulrich</au><au>Selkirk, Henry B.</au><au>Sokolov, Andrei</au><au>Unger, Nadine</au><au>Wolfe, Philip</au><au>Wong, Hsi-Wu</au><au>Wuebbles, Donald W.</au><au>Yi, Bingqi</au><au>Yang, Ping</au><au>Zhou, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPACT OF AVIATION ON CLIMATE: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>97</volume><issue>4</issue><spage>561</spage><epage>584</epage><pages>561-584</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><coden>BAMIAT</coden><abstract>Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO₂ climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO₂ aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOₓ emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOₓ–O₃–CH₄ interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO₂ climate impacts—an important metric that informs decision-making.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/bams-d-13-00089.1</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2016-04, Vol.97 (4), p.561-584
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_miscellaneous_1877844005
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Aerosols
Aircraft
Alternative fuels
Atmosphere
Atmospheric chemistry
Atmospheric models
Aviation
Black carbon
Carbon aerosols
Carbon dioxide
Carbon dioxide emissions
Chemistry
Cirrus clouds
Civil aviation
Climate change
Climate change research
Contrails
Decision making
Emissions
Environmental impact
Global climate
Mitigation
Nitrogen compounds
Nitrogen oxides
Nitrogen oxides emissions
Ozone
Portfolio management
Radiative forcing
Renewable fuels
Stratosphere
Sulfates
title IMPACT OF AVIATION ON CLIMATE: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPACT%20OF%20AVIATION%20ON%20CLIMATE:%20FAA%E2%80%99s%20Aviation%20Climate%20Change%20Research%20Initiative%20(ACCRI)%20Phase%20II&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Brasseur,%20Guy%20P.&rft.date=2016-04-01&rft.volume=97&rft.issue=4&rft.spage=561&rft.epage=584&rft.pages=561-584&rft.issn=0003-0007&rft.eissn=1520-0477&rft.coden=BAMIAT&rft_id=info:doi/10.1175/bams-d-13-00089.1&rft_dat=%3Cjstor_proqu%3E26243303%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789499790&rft_id=info:pmid/&rft_jstor_id=26243303&rfr_iscdi=true