Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?

This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2016-04, Vol.17 (4), p.1119-1129
Hauptverfasser: Maggioni, Viviana, Sapiano, Mathew R. P., Adler, Robert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 4
container_start_page 1119
container_title Journal of hydrometeorology
container_volume 17
creator Maggioni, Viviana
Sapiano, Mathew R. P.
Adler, Robert F.
description This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.
doi_str_mv 10.1175/JHM-D-15-0094.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877840748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26152382</jstor_id><sourcerecordid>26152382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-faec9d055565eafb56ae91f245bd567bee93a103e9f9539e2e9cc23919b541b73</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqUwMyFFYmFx64vjJB5RKRRURAVUYrMc91JctUmxnYF_j0tRB6Y7nd53unuEXAIbABRi-DR5pncUBGVMZgM4Ij0QqaCFyOD40IuPU3Lm_Yoxlkkoe2Q69sFudLDNMpk3Bl3QtgkWfWKbZGKXn_QVfbvugm2b5E0HXK9twGTm0NitDfp3PnPtojPBn5OTWq89XvzVPpnfj99HEzp9eXgc3U6p4bkItNZo5IIJIXKBuq5ErlFCnWaiWoi8qBAl18A4yloKLjFFaUzKJcgqPlMVvE9u9nu3rv3q0Ae1sd7E03SDbecVlEVRZqzIyohe_0NXbeeaeJ0CmeYlsJLzSA33lHGt9w5rtXXRivtWwNTOrop21Z0CoXZ2FcTE1T6x8qF1BzzNo2hepvwHOkl3VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926810833</pqid></control><display><type>article</type><title>Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Maggioni, Viviana ; Sapiano, Mathew R. P. ; Adler, Robert F.</creator><creatorcontrib>Maggioni, Viviana ; Sapiano, Mathew R. P. ; Adler, Robert F.</creatorcontrib><description>This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-15-0094.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric precipitations ; Bias ; Climate change ; Climate models ; Climate prediction ; Climate studies ; Components ; Datasets ; Dependence ; Deployment ; Error analysis ; Frameworks ; Hazard mitigation ; Hydrologic cycle ; Hydrologic models ; Hydrology ; Mitigation ; Modelling ; Policies ; Precipitation ; Procedures ; Products ; Rain ; Random errors ; Real time ; Satellite observation ; Satellites ; Tropical Rainfall Measuring Mission (TRMM) ; Uncertainty ; Water management</subject><ispartof>Journal of hydrometeorology, 2016-04, Vol.17 (4), p.1119-1129</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-faec9d055565eafb56ae91f245bd567bee93a103e9f9539e2e9cc23919b541b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26152382$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26152382$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,3668,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>Maggioni, Viviana</creatorcontrib><creatorcontrib>Sapiano, Mathew R. P.</creatorcontrib><creatorcontrib>Adler, Robert F.</creatorcontrib><title>Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?</title><title>Journal of hydrometeorology</title><description>This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.</description><subject>Atmospheric precipitations</subject><subject>Bias</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Climate studies</subject><subject>Components</subject><subject>Datasets</subject><subject>Dependence</subject><subject>Deployment</subject><subject>Error analysis</subject><subject>Frameworks</subject><subject>Hazard mitigation</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Mitigation</subject><subject>Modelling</subject><subject>Policies</subject><subject>Precipitation</subject><subject>Procedures</subject><subject>Products</subject><subject>Rain</subject><subject>Random errors</subject><subject>Real time</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Tropical Rainfall Measuring Mission (TRMM)</subject><subject>Uncertainty</subject><subject>Water management</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkDFPwzAQRi0EEqUwMyFFYmFx64vjJB5RKRRURAVUYrMc91JctUmxnYF_j0tRB6Y7nd53unuEXAIbABRi-DR5pncUBGVMZgM4Ij0QqaCFyOD40IuPU3Lm_Yoxlkkoe2Q69sFudLDNMpk3Bl3QtgkWfWKbZGKXn_QVfbvugm2b5E0HXK9twGTm0NitDfp3PnPtojPBn5OTWq89XvzVPpnfj99HEzp9eXgc3U6p4bkItNZo5IIJIXKBuq5ErlFCnWaiWoi8qBAl18A4yloKLjFFaUzKJcgqPlMVvE9u9nu3rv3q0Ae1sd7E03SDbecVlEVRZqzIyohe_0NXbeeaeJ0CmeYlsJLzSA33lHGt9w5rtXXRivtWwNTOrop21Z0CoXZ2FcTE1T6x8qF1BzzNo2hepvwHOkl3VA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Maggioni, Viviana</creator><creator>Sapiano, Mathew R. P.</creator><creator>Adler, Robert F.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160401</creationdate><title>Estimating Uncertainties in High-Resolution Satellite Precipitation Products</title><author>Maggioni, Viviana ; Sapiano, Mathew R. P. ; Adler, Robert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-faec9d055565eafb56ae91f245bd567bee93a103e9f9539e2e9cc23919b541b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric precipitations</topic><topic>Bias</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Climate studies</topic><topic>Components</topic><topic>Datasets</topic><topic>Dependence</topic><topic>Deployment</topic><topic>Error analysis</topic><topic>Frameworks</topic><topic>Hazard mitigation</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Mitigation</topic><topic>Modelling</topic><topic>Policies</topic><topic>Precipitation</topic><topic>Procedures</topic><topic>Products</topic><topic>Rain</topic><topic>Random errors</topic><topic>Real time</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Tropical Rainfall Measuring Mission (TRMM)</topic><topic>Uncertainty</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggioni, Viviana</creatorcontrib><creatorcontrib>Sapiano, Mathew R. P.</creatorcontrib><creatorcontrib>Adler, Robert F.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggioni, Viviana</au><au>Sapiano, Mathew R. P.</au><au>Adler, Robert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>17</volume><issue>4</issue><spage>1119</spage><epage>1129</epage><pages>1119-1129</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-15-0094.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2016-04, Vol.17 (4), p.1119-1129
issn 1525-755X
1525-7541
language eng
recordid cdi_proquest_miscellaneous_1877840748
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Atmospheric precipitations
Bias
Climate change
Climate models
Climate prediction
Climate studies
Components
Datasets
Dependence
Deployment
Error analysis
Frameworks
Hazard mitigation
Hydrologic cycle
Hydrologic models
Hydrology
Mitigation
Modelling
Policies
Precipitation
Procedures
Products
Rain
Random errors
Real time
Satellite observation
Satellites
Tropical Rainfall Measuring Mission (TRMM)
Uncertainty
Water management
title Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Uncertainties%20in%20High-Resolution%20Satellite%20Precipitation%20Products:%20Systematic%20or%20Random%20Error?&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Maggioni,%20Viviana&rft.date=2016-04-01&rft.volume=17&rft.issue=4&rft.spage=1119&rft.epage=1129&rft.pages=1119-1129&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-15-0094.1&rft_dat=%3Cjstor_proqu%3E26152382%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926810833&rft_id=info:pmid/&rft_jstor_id=26152382&rfr_iscdi=true