Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia

Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6–8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sedime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geochemistry and health 2017-02, Vol.39 (1), p.209-219
Hauptverfasser: Hettiarachchi, S. R., Maher, W. A., Krikowa, F., Ubrihien, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 209
container_title Environmental geochemistry and health
container_volume 39
creator Hettiarachchi, S. R.
Maher, W. A.
Krikowa, F.
Ubrihien, R.
description Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6–8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sediment quality guideline-low trigger value. The bulk sediment pH was 6.0–7.3 and Eh −80 to −260 mV. The sediments contained variable silt–clay (2–30 % w/w), iron (668–12721 μg/g), manganese (1–115 μg/g), sulphur (70–18400 μg/g) and carbon (5–90 mg/g) concentrations. Arsenic concentrations correlated with silt and clay content, iron and manganese concentrations, indicating silt–clay particles covered and coated with iron and manganese (oxy) hydroxides scavenged arsenic. Arsenic extracted with 0.5 M phosphoric acid (68–95 %) was present only as inorganic arsenic (55–91 %), indicating that other arsenic species such as arsenobetaine derived from marine animal tissues rapidly degrade in sediments. The unextractable arsenic was correlated with increases in organic carbon, iron and manganese content. In conclusion, the cycling of arsenic in mangrove sediments is essentially the cycling of inorganic arsenic and primarily controlled by the redox cycling of carbon, sulphur, iron and manganese.
doi_str_mv 10.1007/s10653-016-9821-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877837041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877837041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-7120b0850f26ac1fcc6f7c62ff1b7d2f1b5bc713498dde1c771f85e772f9da253</originalsourceid><addsrcrecordid>eNqN0UFvFCEYBmBiNHat_gAvhsSLB9EPhoHh2DStmjR6UOORsAysNDOw8s006b-XzVZjTJr0wnfg4QXyEvKSwzsOoN8jB9V3DLhiZhCc9Y_Ihve6Y8IM3WOyAaEMkyDFCXmGeA0ARsvhKTkRGjoQEjYEL51fSkWacpzWkH3KO-oqhpw89SX7kJfqllQyUpdHivvgUzhwOru8q-UmUFxrdL7NMKa5eaSxlpliWZefLDhc6OevP97SsxVb1JTcc_IkugnDi7t5Sr5fXnw7_8iuvnz4dH52xbyEfmGaC9jC0EMUynkevVdReyVi5Fs9irb2W695J80wjoF7rXkc-qC1iGZ0ou9OyZtj7r6WX2vAxc4JfZgml0NZ0fJB66HTIPkDqFBKg-Cm0df_0euy1tw-0pQy0kg5yKb4UflaEGuIdl_T7Oqt5WAP5dljebaVZw_l2cN7X90lr9s5jH9P_GmrAXEE2LbyLtR_rr439TeJIKVH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869494484</pqid></control><display><type>article</type><title>Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hettiarachchi, S. R. ; Maher, W. A. ; Krikowa, F. ; Ubrihien, R.</creator><creatorcontrib>Hettiarachchi, S. R. ; Maher, W. A. ; Krikowa, F. ; Ubrihien, R.</creatorcontrib><description>Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6–8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sediment quality guideline-low trigger value. The bulk sediment pH was 6.0–7.3 and Eh −80 to −260 mV. The sediments contained variable silt–clay (2–30 % w/w), iron (668–12721 μg/g), manganese (1–115 μg/g), sulphur (70–18400 μg/g) and carbon (5–90 mg/g) concentrations. Arsenic concentrations correlated with silt and clay content, iron and manganese concentrations, indicating silt–clay particles covered and coated with iron and manganese (oxy) hydroxides scavenged arsenic. Arsenic extracted with 0.5 M phosphoric acid (68–95 %) was present only as inorganic arsenic (55–91 %), indicating that other arsenic species such as arsenobetaine derived from marine animal tissues rapidly degrade in sediments. The unextractable arsenic was correlated with increases in organic carbon, iron and manganese content. In conclusion, the cycling of arsenic in mangrove sediments is essentially the cycling of inorganic arsenic and primarily controlled by the redox cycling of carbon, sulphur, iron and manganese.</description><identifier>ISSN: 0269-4042</identifier><identifier>EISSN: 1573-2983</identifier><identifier>DOI: 10.1007/s10653-016-9821-5</identifier><identifier>PMID: 27030240</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal tissues ; Arsenic ; Arsenic - analysis ; Carbon ; Clay ; Earth and Environmental Science ; Emissions ; Environment ; Environmental Chemistry ; Environmental Health ; Geochemistry ; Geologic Sediments - chemistry ; Hydroxides ; Iron ; Manganese ; New South Wales ; Organic carbon ; Original Paper ; Public Health ; Sediment samplers ; Sediments ; Silt ; Soil Science &amp; Conservation ; Speciation ; Terrestrial Pollution ; Volcanoes ; Wetlands</subject><ispartof>Environmental geochemistry and health, 2017-02, Vol.39 (1), p.209-219</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Environmental Geochemistry and Health is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-7120b0850f26ac1fcc6f7c62ff1b7d2f1b5bc713498dde1c771f85e772f9da253</citedby><cites>FETCH-LOGICAL-c405t-7120b0850f26ac1fcc6f7c62ff1b7d2f1b5bc713498dde1c771f85e772f9da253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10653-016-9821-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10653-016-9821-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27030240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hettiarachchi, S. R.</creatorcontrib><creatorcontrib>Maher, W. A.</creatorcontrib><creatorcontrib>Krikowa, F.</creatorcontrib><creatorcontrib>Ubrihien, R.</creatorcontrib><title>Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia</title><title>Environmental geochemistry and health</title><addtitle>Environ Geochem Health</addtitle><addtitle>Environ Geochem Health</addtitle><description>Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6–8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sediment quality guideline-low trigger value. The bulk sediment pH was 6.0–7.3 and Eh −80 to −260 mV. The sediments contained variable silt–clay (2–30 % w/w), iron (668–12721 μg/g), manganese (1–115 μg/g), sulphur (70–18400 μg/g) and carbon (5–90 mg/g) concentrations. Arsenic concentrations correlated with silt and clay content, iron and manganese concentrations, indicating silt–clay particles covered and coated with iron and manganese (oxy) hydroxides scavenged arsenic. Arsenic extracted with 0.5 M phosphoric acid (68–95 %) was present only as inorganic arsenic (55–91 %), indicating that other arsenic species such as arsenobetaine derived from marine animal tissues rapidly degrade in sediments. The unextractable arsenic was correlated with increases in organic carbon, iron and manganese content. In conclusion, the cycling of arsenic in mangrove sediments is essentially the cycling of inorganic arsenic and primarily controlled by the redox cycling of carbon, sulphur, iron and manganese.</description><subject>Animal tissues</subject><subject>Arsenic</subject><subject>Arsenic - analysis</subject><subject>Carbon</subject><subject>Clay</subject><subject>Earth and Environmental Science</subject><subject>Emissions</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Geochemistry</subject><subject>Geologic Sediments - chemistry</subject><subject>Hydroxides</subject><subject>Iron</subject><subject>Manganese</subject><subject>New South Wales</subject><subject>Organic carbon</subject><subject>Original Paper</subject><subject>Public Health</subject><subject>Sediment samplers</subject><subject>Sediments</subject><subject>Silt</subject><subject>Soil Science &amp; Conservation</subject><subject>Speciation</subject><subject>Terrestrial Pollution</subject><subject>Volcanoes</subject><subject>Wetlands</subject><issn>0269-4042</issn><issn>1573-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0UFvFCEYBmBiNHat_gAvhsSLB9EPhoHh2DStmjR6UOORsAysNDOw8s006b-XzVZjTJr0wnfg4QXyEvKSwzsOoN8jB9V3DLhiZhCc9Y_Ihve6Y8IM3WOyAaEMkyDFCXmGeA0ARsvhKTkRGjoQEjYEL51fSkWacpzWkH3KO-oqhpw89SX7kJfqllQyUpdHivvgUzhwOru8q-UmUFxrdL7NMKa5eaSxlpliWZefLDhc6OevP97SsxVb1JTcc_IkugnDi7t5Sr5fXnw7_8iuvnz4dH52xbyEfmGaC9jC0EMUynkevVdReyVi5Fs9irb2W695J80wjoF7rXkc-qC1iGZ0ou9OyZtj7r6WX2vAxc4JfZgml0NZ0fJB66HTIPkDqFBKg-Cm0df_0euy1tw-0pQy0kg5yKb4UflaEGuIdl_T7Oqt5WAP5dljebaVZw_l2cN7X90lr9s5jH9P_GmrAXEE2LbyLtR_rr439TeJIKVH</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hettiarachchi, S. R.</creator><creator>Maher, W. A.</creator><creator>Krikowa, F.</creator><creator>Ubrihien, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>7U7</scope></search><sort><creationdate>20170201</creationdate><title>Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia</title><author>Hettiarachchi, S. R. ; Maher, W. A. ; Krikowa, F. ; Ubrihien, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-7120b0850f26ac1fcc6f7c62ff1b7d2f1b5bc713498dde1c771f85e772f9da253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal tissues</topic><topic>Arsenic</topic><topic>Arsenic - analysis</topic><topic>Carbon</topic><topic>Clay</topic><topic>Earth and Environmental Science</topic><topic>Emissions</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Geochemistry</topic><topic>Geologic Sediments - chemistry</topic><topic>Hydroxides</topic><topic>Iron</topic><topic>Manganese</topic><topic>New South Wales</topic><topic>Organic carbon</topic><topic>Original Paper</topic><topic>Public Health</topic><topic>Sediment samplers</topic><topic>Sediments</topic><topic>Silt</topic><topic>Soil Science &amp; Conservation</topic><topic>Speciation</topic><topic>Terrestrial Pollution</topic><topic>Volcanoes</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettiarachchi, S. R.</creatorcontrib><creatorcontrib>Maher, W. A.</creatorcontrib><creatorcontrib>Krikowa, F.</creatorcontrib><creatorcontrib>Ubrihien, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><jtitle>Environmental geochemistry and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettiarachchi, S. R.</au><au>Maher, W. A.</au><au>Krikowa, F.</au><au>Ubrihien, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia</atitle><jtitle>Environmental geochemistry and health</jtitle><stitle>Environ Geochem Health</stitle><addtitle>Environ Geochem Health</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>39</volume><issue>1</issue><spage>209</spage><epage>219</epage><pages>209-219</pages><issn>0269-4042</issn><eissn>1573-2983</eissn><abstract>Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6–8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sediment quality guideline-low trigger value. The bulk sediment pH was 6.0–7.3 and Eh −80 to −260 mV. The sediments contained variable silt–clay (2–30 % w/w), iron (668–12721 μg/g), manganese (1–115 μg/g), sulphur (70–18400 μg/g) and carbon (5–90 mg/g) concentrations. Arsenic concentrations correlated with silt and clay content, iron and manganese concentrations, indicating silt–clay particles covered and coated with iron and manganese (oxy) hydroxides scavenged arsenic. Arsenic extracted with 0.5 M phosphoric acid (68–95 %) was present only as inorganic arsenic (55–91 %), indicating that other arsenic species such as arsenobetaine derived from marine animal tissues rapidly degrade in sediments. The unextractable arsenic was correlated with increases in organic carbon, iron and manganese content. In conclusion, the cycling of arsenic in mangrove sediments is essentially the cycling of inorganic arsenic and primarily controlled by the redox cycling of carbon, sulphur, iron and manganese.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27030240</pmid><doi>10.1007/s10653-016-9821-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-4042
ispartof Environmental geochemistry and health, 2017-02, Vol.39 (1), p.209-219
issn 0269-4042
1573-2983
language eng
recordid cdi_proquest_miscellaneous_1877837041
source MEDLINE; SpringerLink Journals
subjects Animal tissues
Arsenic
Arsenic - analysis
Carbon
Clay
Earth and Environmental Science
Emissions
Environment
Environmental Chemistry
Environmental Health
Geochemistry
Geologic Sediments - chemistry
Hydroxides
Iron
Manganese
New South Wales
Organic carbon
Original Paper
Public Health
Sediment samplers
Sediments
Silt
Soil Science & Conservation
Speciation
Terrestrial Pollution
Volcanoes
Wetlands
title Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20influencing%20arsenic%20concentrations%20and%20species%20in%20mangrove%20surface%20sediments%20from%20south-east%20NSW,%20Australia&rft.jtitle=Environmental%20geochemistry%20and%20health&rft.au=Hettiarachchi,%20S.%20R.&rft.date=2017-02-01&rft.volume=39&rft.issue=1&rft.spage=209&rft.epage=219&rft.pages=209-219&rft.issn=0269-4042&rft.eissn=1573-2983&rft_id=info:doi/10.1007/s10653-016-9821-5&rft_dat=%3Cproquest_cross%3E1877837041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869494484&rft_id=info:pmid/27030240&rfr_iscdi=true