Photocaged G‑Quadruplex DNAzyme and Aptamer by Post-Synthetic Modification on Phosphodiester Backbone

G-quadruplex-containing DNAzymes and aptamers are widely applied in many research fields because of their high stability and prominent activities versus the protein counterparts. In this work, G-quadruplex DNAs were equipped with photolabile groups to construct photocaged DNAzymes and aptamers. We i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2017-02, Vol.28 (2), p.549-555
Hauptverfasser: Feng, Mengli, Ruan, Zhiyuan, Shang, Jiachen, Xiao, Lu, Tong, Aijun, Xiang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G-quadruplex-containing DNAzymes and aptamers are widely applied in many research fields because of their high stability and prominent activities versus the protein counterparts. In this work, G-quadruplex DNAs were equipped with photolabile groups to construct photocaged DNAzymes and aptamers. We incorporated TEEP–OH (thioether-enol phosphate, phenol substituted) into phosphodiester backbone of G-quadruplex DNA by a facile post-synthetic method to achieve efficient photocaging of their activities. Upon light irradiation, the peroxidase-mimicking activity of the caged G-quadruplex DNAzyme was activated, through the transformation of TEEP–OH into a native DNA phosphodiester without any artificial scar. Similarly, the caged G-quadruplex thrombin-binding aptamer also showed light-induced activation of thrombin inhibition activity. This method could serve as a general strategy to prepare photocaged G-quadruplex DNA with other activities for noninvasive control of their functions.
ISSN:1043-1802
1520-4812
DOI:10.1021/acs.bioconjchem.6b00646