Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change
How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolut...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2017-02, Vol.1389 (1), p.5-19 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1389 |
creator | Diamond, Sarah E. |
description | How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. |
doi_str_mv | 10.1111/nyas.13223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877834443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4315783231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</originalsourceid><addsrcrecordid>eNqNkc9rFDEUgINY7LZ68Q-QgBcpTM2vmWS8ldJWoehBPXga3mZedqfMJmOSqe5_34xbPXgQk0MgfHzw3kfIS87OeTlv_R7SOZdCyCdkxbVqq6aR4ilZMaZ1ZVohj8lJSneMcWGUfkaOhdasMVKsSLi6D-Och-Ah7ukUMvo8wEiDo_M0YaR5i3FXPnIYMYK3-I6uh7DBsIkwbQdLJ8gZo08UfE_x54Q2w-JLdPZ9Edhx2EFGarfgN_icHDkYE754fE_J1-urL5fvq9tPNx8uL24rK1smK-6MXre2rVmPiveA5TbWmgYYtJY75VDUjeitqlXNXe0Y6nXthDAoAJiRp-TNwTvF8H3GlLvdkCyOI3gMc-q40dpIpZT8D1TWsjHM8IK-_gu9C3P0ZZBFyFhpYBbh2YGyMaQU0XVTLDuI-46zbinWLcW6X8UK_OpROa932P9BfycqAD8AP4YR9_9QdR-_XXw-SB8Ax82i1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870032283</pqid></control><display><type>article</type><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Diamond, Sarah E.</creator><creatorcontrib>Diamond, Sarah E.</creatorcontrib><description>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.13223</identifier><identifier>PMID: 27706832</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptation, Physiological ; adaptive capacity ; Animals ; Biogeography ; Biological Evolution ; Climate ; Climate Change ; evolutionary potential ; Geography ; heritability ; Phenotype ; Selection, Genetic ; Temperature ; thermal tolerance</subject><ispartof>Annals of the New York Academy of Sciences, 2017-02, Vol.1389 (1), p.5-19</ispartof><rights>2016 New York Academy of Sciences.</rights><rights>2017 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</citedby><cites>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.13223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.13223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27706832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diamond, Sarah E.</creatorcontrib><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</description><subject>Adaptation, Physiological</subject><subject>adaptive capacity</subject><subject>Animals</subject><subject>Biogeography</subject><subject>Biological Evolution</subject><subject>Climate</subject><subject>Climate Change</subject><subject>evolutionary potential</subject><subject>Geography</subject><subject>heritability</subject><subject>Phenotype</subject><subject>Selection, Genetic</subject><subject>Temperature</subject><subject>thermal tolerance</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEUgINY7LZ68Q-QgBcpTM2vmWS8ldJWoehBPXga3mZedqfMJmOSqe5_34xbPXgQk0MgfHzw3kfIS87OeTlv_R7SOZdCyCdkxbVqq6aR4ilZMaZ1ZVohj8lJSneMcWGUfkaOhdasMVKsSLi6D-Och-Ah7ukUMvo8wEiDo_M0YaR5i3FXPnIYMYK3-I6uh7DBsIkwbQdLJ8gZo08UfE_x54Q2w-JLdPZ9Edhx2EFGarfgN_icHDkYE754fE_J1-urL5fvq9tPNx8uL24rK1smK-6MXre2rVmPiveA5TbWmgYYtJY75VDUjeitqlXNXe0Y6nXthDAoAJiRp-TNwTvF8H3GlLvdkCyOI3gMc-q40dpIpZT8D1TWsjHM8IK-_gu9C3P0ZZBFyFhpYBbh2YGyMaQU0XVTLDuI-46zbinWLcW6X8UK_OpROa932P9BfycqAD8AP4YR9_9QdR-_XXw-SB8Ax82i1A</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Diamond, Sarah E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><author>Diamond, Sarah E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>adaptive capacity</topic><topic>Animals</topic><topic>Biogeography</topic><topic>Biological Evolution</topic><topic>Climate</topic><topic>Climate Change</topic><topic>evolutionary potential</topic><topic>Geography</topic><topic>heritability</topic><topic>Phenotype</topic><topic>Selection, Genetic</topic><topic>Temperature</topic><topic>thermal tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamond, Sarah E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamond, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2017-02</date><risdate>2017</risdate><volume>1389</volume><issue>1</issue><spage>5</spage><epage>19</epage><pages>5-19</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27706832</pmid><doi>10.1111/nyas.13223</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2017-02, Vol.1389 (1), p.5-19 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877834443 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adaptation, Physiological adaptive capacity Animals Biogeography Biological Evolution Climate Climate Change evolutionary potential Geography heritability Phenotype Selection, Genetic Temperature thermal tolerance |
title | Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20potential%20of%20upper%20thermal%20tolerance:%20biogeographic%20patterns%20and%20expectations%20under%20climate%20change&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Diamond,%20Sarah%20E.&rft.date=2017-02&rft.volume=1389&rft.issue=1&rft.spage=5&rft.epage=19&rft.pages=5-19&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/nyas.13223&rft_dat=%3Cproquest_cross%3E4315783231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870032283&rft_id=info:pmid/27706832&rfr_iscdi=true |