Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change

How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2017-02, Vol.1389 (1), p.5-19
1. Verfasser: Diamond, Sarah E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 5
container_title Annals of the New York Academy of Sciences
container_volume 1389
creator Diamond, Sarah E.
description How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.
doi_str_mv 10.1111/nyas.13223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877834443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4315783231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</originalsourceid><addsrcrecordid>eNqNkc9rFDEUgINY7LZ68Q-QgBcpTM2vmWS8ldJWoehBPXga3mZedqfMJmOSqe5_34xbPXgQk0MgfHzw3kfIS87OeTlv_R7SOZdCyCdkxbVqq6aR4ilZMaZ1ZVohj8lJSneMcWGUfkaOhdasMVKsSLi6D-Och-Ah7ukUMvo8wEiDo_M0YaR5i3FXPnIYMYK3-I6uh7DBsIkwbQdLJ8gZo08UfE_x54Q2w-JLdPZ9Edhx2EFGarfgN_icHDkYE754fE_J1-urL5fvq9tPNx8uL24rK1smK-6MXre2rVmPiveA5TbWmgYYtJY75VDUjeitqlXNXe0Y6nXthDAoAJiRp-TNwTvF8H3GlLvdkCyOI3gMc-q40dpIpZT8D1TWsjHM8IK-_gu9C3P0ZZBFyFhpYBbh2YGyMaQU0XVTLDuI-46zbinWLcW6X8UK_OpROa932P9BfycqAD8AP4YR9_9QdR-_XXw-SB8Ax82i1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870032283</pqid></control><display><type>article</type><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Diamond, Sarah E.</creator><creatorcontrib>Diamond, Sarah E.</creatorcontrib><description>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.13223</identifier><identifier>PMID: 27706832</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptation, Physiological ; adaptive capacity ; Animals ; Biogeography ; Biological Evolution ; Climate ; Climate Change ; evolutionary potential ; Geography ; heritability ; Phenotype ; Selection, Genetic ; Temperature ; thermal tolerance</subject><ispartof>Annals of the New York Academy of Sciences, 2017-02, Vol.1389 (1), p.5-19</ispartof><rights>2016 New York Academy of Sciences.</rights><rights>2017 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</citedby><cites>FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.13223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.13223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27706832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diamond, Sarah E.</creatorcontrib><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</description><subject>Adaptation, Physiological</subject><subject>adaptive capacity</subject><subject>Animals</subject><subject>Biogeography</subject><subject>Biological Evolution</subject><subject>Climate</subject><subject>Climate Change</subject><subject>evolutionary potential</subject><subject>Geography</subject><subject>heritability</subject><subject>Phenotype</subject><subject>Selection, Genetic</subject><subject>Temperature</subject><subject>thermal tolerance</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEUgINY7LZ68Q-QgBcpTM2vmWS8ldJWoehBPXga3mZedqfMJmOSqe5_34xbPXgQk0MgfHzw3kfIS87OeTlv_R7SOZdCyCdkxbVqq6aR4ilZMaZ1ZVohj8lJSneMcWGUfkaOhdasMVKsSLi6D-Och-Ah7ukUMvo8wEiDo_M0YaR5i3FXPnIYMYK3-I6uh7DBsIkwbQdLJ8gZo08UfE_x54Q2w-JLdPZ9Edhx2EFGarfgN_icHDkYE754fE_J1-urL5fvq9tPNx8uL24rK1smK-6MXre2rVmPiveA5TbWmgYYtJY75VDUjeitqlXNXe0Y6nXthDAoAJiRp-TNwTvF8H3GlLvdkCyOI3gMc-q40dpIpZT8D1TWsjHM8IK-_gu9C3P0ZZBFyFhpYBbh2YGyMaQU0XVTLDuI-46zbinWLcW6X8UK_OpROa932P9BfycqAD8AP4YR9_9QdR-_XXw-SB8Ax82i1A</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Diamond, Sarah E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</title><author>Diamond, Sarah E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3903-1f87b9c950de41daeaea6cc86a0a9c1f4fe2562dc45451f5f0e7b5f228e2aa083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>adaptive capacity</topic><topic>Animals</topic><topic>Biogeography</topic><topic>Biological Evolution</topic><topic>Climate</topic><topic>Climate Change</topic><topic>evolutionary potential</topic><topic>Geography</topic><topic>heritability</topic><topic>Phenotype</topic><topic>Selection, Genetic</topic><topic>Temperature</topic><topic>thermal tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamond, Sarah E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamond, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2017-02</date><risdate>2017</risdate><volume>1389</volume><issue>1</issue><spage>5</spage><epage>19</epage><pages>5-19</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness‐related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta‐analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27706832</pmid><doi>10.1111/nyas.13223</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2017-02, Vol.1389 (1), p.5-19
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_1877834443
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adaptation, Physiological
adaptive capacity
Animals
Biogeography
Biological Evolution
Climate
Climate Change
evolutionary potential
Geography
heritability
Phenotype
Selection, Genetic
Temperature
thermal tolerance
title Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20potential%20of%20upper%20thermal%20tolerance:%20biogeographic%20patterns%20and%20expectations%20under%20climate%20change&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Diamond,%20Sarah%20E.&rft.date=2017-02&rft.volume=1389&rft.issue=1&rft.spage=5&rft.epage=19&rft.pages=5-19&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/nyas.13223&rft_dat=%3Cproquest_cross%3E4315783231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870032283&rft_id=info:pmid/27706832&rfr_iscdi=true