Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration
The major method used for the recovery of aluminum from water purification sludge is through acidification or alkalization, however, the cost of the acid and alkali limits the amount available for use, and thus results in the low concentration of dissolved aluminum salt; moreover, the metal ions and...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2015-07, Vol.17 (3), p.522-528 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 3 |
container_start_page | 522 |
container_title | Journal of material cycles and waste management |
container_volume | 17 |
creator | Chi, Fung Hwa Cheng, Wen Po Tian, Dun Ren Yu, Ruey Fang Fu, Chi Hua |
description | The major method used for the recovery of aluminum from water purification sludge is through acidification or alkalization, however, the cost of the acid and alkali limits the amount available for use, and thus results in the low concentration of dissolved aluminum salt; moreover, the metal ions and organic matter dissolved simultaneously in the process will also increase the difficulty in reuse. Therefore, this study used sulfuric acid to dissolve aluminum in the sludge from the water treatment plant, followed by the low price nanofiltration membranes to increase the concentration of aluminum ions, and then adding potassium sulfate to produce the potassium alum crystal, which has less impurity. The influences of the molar ratio of potassium to aluminum and the temperature on the recovery of crystals are investigated. The result showed that there was good crystal recovery when the molar ratio of potassium to aluminum is above 1.6, but the recovery rate decreased as the temperature increased. |
doi_str_mv | 10.1007/s10163-014-0269-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877831285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3739166311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-cf5102b6171c859697594804b2f95339ace26138f65b0d71ac8f422f69e9932e3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhosouK7-AG8BL16qmaT5OsriFyzoQY8S0jZZunTTNUmV_fdmqQcRxMvMwPu8MwxvUZwDvgKMxXUEDJyWGKoSE65KelDMgAOUkhBxmOeKyrJSTBwXJzGuMSYKUzEr3p6HZGLsxg0yfS5N2MVketTa0H3YFrkwTErnsxpNn1Dn0adJNqAUrEkb6xOK_diuLKp3yBs_uK5PwaRu8KfFkTN9tGfffV683t2-LB7K5dP94-JmWTYVsFQ2jgEmNQcBjWSKK8FUJXFVE6cYpco0lnCg0nFW41aAaaSrCHFcWaUosXReXE57t2F4H21MetPFxva98XYYowYphKRAJPsfFRRjRvL5jF78QtfDGHx-RANXDCiArDIFE9WEIcZgnd6GbmPCTgPW-2z0lI3O2eh9NppmD5k8MbN-ZcOPzX-avgA5_JB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695131184</pqid></control><display><type>article</type><title>Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration</title><source>Springer Nature - Complete Springer Journals</source><creator>Chi, Fung Hwa ; Cheng, Wen Po ; Tian, Dun Ren ; Yu, Ruey Fang ; Fu, Chi Hua</creator><creatorcontrib>Chi, Fung Hwa ; Cheng, Wen Po ; Tian, Dun Ren ; Yu, Ruey Fang ; Fu, Chi Hua</creatorcontrib><description>The major method used for the recovery of aluminum from water purification sludge is through acidification or alkalization, however, the cost of the acid and alkali limits the amount available for use, and thus results in the low concentration of dissolved aluminum salt; moreover, the metal ions and organic matter dissolved simultaneously in the process will also increase the difficulty in reuse. Therefore, this study used sulfuric acid to dissolve aluminum in the sludge from the water treatment plant, followed by the low price nanofiltration membranes to increase the concentration of aluminum ions, and then adding potassium sulfate to produce the potassium alum crystal, which has less impurity. The influences of the molar ratio of potassium to aluminum and the temperature on the recovery of crystals are investigated. The result showed that there was good crystal recovery when the molar ratio of potassium to aluminum is above 1.6, but the recovery rate decreased as the temperature increased.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-014-0269-3</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Acidification ; Alum ; Aluminum ; Civil Engineering ; Crystals ; Deodorants ; Dissolution ; Engineering ; Environmental engineering ; Environmental Management ; Heavy metals ; Metal concentrations ; Metals ; Nanofiltration ; Nanotechnology ; Organic matter ; Original Article ; Potassium ; Recovery ; Recycling ; Salt ; Sludge ; Sulfuric acid ; Waste Management/Waste Technology ; Water filtration ; Water purification ; Water treatment ; Water treatment plants</subject><ispartof>Journal of material cycles and waste management, 2015-07, Vol.17 (3), p.522-528</ispartof><rights>Springer Japan 2014</rights><rights>Springer Japan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-cf5102b6171c859697594804b2f95339ace26138f65b0d71ac8f422f69e9932e3</citedby><cites>FETCH-LOGICAL-c415t-cf5102b6171c859697594804b2f95339ace26138f65b0d71ac8f422f69e9932e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-014-0269-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-014-0269-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chi, Fung Hwa</creatorcontrib><creatorcontrib>Cheng, Wen Po</creatorcontrib><creatorcontrib>Tian, Dun Ren</creatorcontrib><creatorcontrib>Yu, Ruey Fang</creatorcontrib><creatorcontrib>Fu, Chi Hua</creatorcontrib><title>Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>The major method used for the recovery of aluminum from water purification sludge is through acidification or alkalization, however, the cost of the acid and alkali limits the amount available for use, and thus results in the low concentration of dissolved aluminum salt; moreover, the metal ions and organic matter dissolved simultaneously in the process will also increase the difficulty in reuse. Therefore, this study used sulfuric acid to dissolve aluminum in the sludge from the water treatment plant, followed by the low price nanofiltration membranes to increase the concentration of aluminum ions, and then adding potassium sulfate to produce the potassium alum crystal, which has less impurity. The influences of the molar ratio of potassium to aluminum and the temperature on the recovery of crystals are investigated. The result showed that there was good crystal recovery when the molar ratio of potassium to aluminum is above 1.6, but the recovery rate decreased as the temperature increased.</description><subject>Acidification</subject><subject>Alum</subject><subject>Aluminum</subject><subject>Civil Engineering</subject><subject>Crystals</subject><subject>Deodorants</subject><subject>Dissolution</subject><subject>Engineering</subject><subject>Environmental engineering</subject><subject>Environmental Management</subject><subject>Heavy metals</subject><subject>Metal concentrations</subject><subject>Metals</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Organic matter</subject><subject>Original Article</subject><subject>Potassium</subject><subject>Recovery</subject><subject>Recycling</subject><subject>Salt</subject><subject>Sludge</subject><subject>Sulfuric acid</subject><subject>Waste Management/Waste Technology</subject><subject>Water filtration</subject><subject>Water purification</subject><subject>Water treatment</subject><subject>Water treatment plants</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhosouK7-AG8BL16qmaT5OsriFyzoQY8S0jZZunTTNUmV_fdmqQcRxMvMwPu8MwxvUZwDvgKMxXUEDJyWGKoSE65KelDMgAOUkhBxmOeKyrJSTBwXJzGuMSYKUzEr3p6HZGLsxg0yfS5N2MVketTa0H3YFrkwTErnsxpNn1Dn0adJNqAUrEkb6xOK_diuLKp3yBs_uK5PwaRu8KfFkTN9tGfffV683t2-LB7K5dP94-JmWTYVsFQ2jgEmNQcBjWSKK8FUJXFVE6cYpco0lnCg0nFW41aAaaSrCHFcWaUosXReXE57t2F4H21MetPFxva98XYYowYphKRAJPsfFRRjRvL5jF78QtfDGHx-RANXDCiArDIFE9WEIcZgnd6GbmPCTgPW-2z0lI3O2eh9NppmD5k8MbN-ZcOPzX-avgA5_JB_</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chi, Fung Hwa</creator><creator>Cheng, Wen Po</creator><creator>Tian, Dun Ren</creator><creator>Yu, Ruey Fang</creator><creator>Fu, Chi Hua</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QF</scope><scope>7SU</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20150701</creationdate><title>Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration</title><author>Chi, Fung Hwa ; Cheng, Wen Po ; Tian, Dun Ren ; Yu, Ruey Fang ; Fu, Chi Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-cf5102b6171c859697594804b2f95339ace26138f65b0d71ac8f422f69e9932e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidification</topic><topic>Alum</topic><topic>Aluminum</topic><topic>Civil Engineering</topic><topic>Crystals</topic><topic>Deodorants</topic><topic>Dissolution</topic><topic>Engineering</topic><topic>Environmental engineering</topic><topic>Environmental Management</topic><topic>Heavy metals</topic><topic>Metal concentrations</topic><topic>Metals</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Organic matter</topic><topic>Original Article</topic><topic>Potassium</topic><topic>Recovery</topic><topic>Recycling</topic><topic>Salt</topic><topic>Sludge</topic><topic>Sulfuric acid</topic><topic>Waste Management/Waste Technology</topic><topic>Water filtration</topic><topic>Water purification</topic><topic>Water treatment</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Fung Hwa</creatorcontrib><creatorcontrib>Cheng, Wen Po</creatorcontrib><creatorcontrib>Tian, Dun Ren</creatorcontrib><creatorcontrib>Yu, Ruey Fang</creatorcontrib><creatorcontrib>Fu, Chi Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Fung Hwa</au><au>Cheng, Wen Po</au><au>Tian, Dun Ren</au><au>Yu, Ruey Fang</au><au>Fu, Chi Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>17</volume><issue>3</issue><spage>522</spage><epage>528</epage><pages>522-528</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>The major method used for the recovery of aluminum from water purification sludge is through acidification or alkalization, however, the cost of the acid and alkali limits the amount available for use, and thus results in the low concentration of dissolved aluminum salt; moreover, the metal ions and organic matter dissolved simultaneously in the process will also increase the difficulty in reuse. Therefore, this study used sulfuric acid to dissolve aluminum in the sludge from the water treatment plant, followed by the low price nanofiltration membranes to increase the concentration of aluminum ions, and then adding potassium sulfate to produce the potassium alum crystal, which has less impurity. The influences of the molar ratio of potassium to aluminum and the temperature on the recovery of crystals are investigated. The result showed that there was good crystal recovery when the molar ratio of potassium to aluminum is above 1.6, but the recovery rate decreased as the temperature increased.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-014-0269-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2015-07, Vol.17 (3), p.522-528 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877831285 |
source | Springer Nature - Complete Springer Journals |
subjects | Acidification Alum Aluminum Civil Engineering Crystals Deodorants Dissolution Engineering Environmental engineering Environmental Management Heavy metals Metal concentrations Metals Nanofiltration Nanotechnology Organic matter Original Article Potassium Recovery Recycling Salt Sludge Sulfuric acid Waste Management/Waste Technology Water filtration Water purification Water treatment Water treatment plants |
title | Potassium alum crystal derived from aluminum salt in water treatment sludge by nanofiltration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potassium%20alum%20crystal%20derived%20from%20aluminum%20salt%20in%20water%20treatment%20sludge%20by%20nanofiltration&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Chi,%20Fung%20Hwa&rft.date=2015-07-01&rft.volume=17&rft.issue=3&rft.spage=522&rft.epage=528&rft.pages=522-528&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-014-0269-3&rft_dat=%3Cproquest_cross%3E3739166311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695131184&rft_id=info:pmid/&rfr_iscdi=true |