A statistical framework for estimating air temperature using MODIS land surface temperature data
Remote sensing has shown an immense capability for large‐scale estimation of air temperature (Tair), one of the most important environmental state variables, using land surface temperature (LST) data. Following recent investigations on the Tair–LST relationship, in this article, we propose an advanc...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2017-03, Vol.37 (3), p.1181-1194 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1194 |
---|---|
container_issue | 3 |
container_start_page | 1181 |
container_title | International journal of climatology |
container_volume | 37 |
creator | Janatian, Nasime Sadeghi, Morteza Sanaeinejad, Seyed Hossein Bakhshian, Elham Farid, Ali Hasheminia, Seyed Majid Ghazanfari, Sadegh |
description | Remote sensing has shown an immense capability for large‐scale estimation of air temperature (Tair), one of the most important environmental state variables, using land surface temperature (LST) data. Following recent investigations on the Tair–LST relationship, in this article, we propose an advanced statistical approach to this realm. We tested the approach for estimation of Tair in eastern part of Iran using MODIS daytime and nighttime LST products and 11 auxiliary variables including Julian day, solar zenith angle, extraterrestrial solar radiation, latitude, altitude, reflectance at various visible and infrared bands and vegetation indices. Fourteen statistical models constructed through a stepwise regression analysis were evaluated along a 5‐year period (2000–2004) using MODIS and meteorological station data. Results of this study indicated that the statistical approach performed reasonably well, where our final proposed model could estimate average Tair with validation mean absolute error of 2.3 and 1.8 °C at daily and weekly scales, respectively. Nighttime LST, Julian day, altitude and solar zenith angle indicated to be the most effective variables capturing most variations of Tair in the study region. Variables influenced by land surface and land cover properties including reflectance at different bands and vegetation indices showed a negligible effect on the Tair‐LST relationship within the study area. It was indicated that the proposed models generally performed better for lower altitude regions. |
doi_str_mv | 10.1002/joc.4766 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877821109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903618367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-deafaa826bb0df538ae2f382b7b44a189a4448a60684a3e6a148aae8e2e32ae23</originalsourceid><addsrcrecordid>eNp90d9LwzAQB_AgCs4p-CcEfPGlM2my9Po45q-Jsgf1uV7bi3S260xaxv57MyeIgj6FXD5JvtwxdirFSAoRXyzaYqQTY_bYQIo0iYQA2GcDAWkagZZwyI68Xwgh0lSaAXuZcN9hV_muKrDm1mFD69a9cds6TqHahMPlK8fK8Y6aFTnseke899vqw_xy9shrXJbc985iQT9QiR0eswOLtaeTr3XInq-vnqa30f38Zjad3EeFGmsTlYQWEWKT56K0YwVIsVUQ50muNUpIUWsNaIQBjYoMyrBDAopJxcGqITvfvbty7XsfkmdN5QuqQzhqe59JSBKIZehJoGe_6KLt3TKky2QqlJGgTPKvgkRp0Gasv78tXOu9I5utXOiZ22RSZNuBhFtFth1IoNGOrquaNn-67G4-_fQfbZCL7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873484654</pqid></control><display><type>article</type><title>A statistical framework for estimating air temperature using MODIS land surface temperature data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Janatian, Nasime ; Sadeghi, Morteza ; Sanaeinejad, Seyed Hossein ; Bakhshian, Elham ; Farid, Ali ; Hasheminia, Seyed Majid ; Ghazanfari, Sadegh</creator><creatorcontrib>Janatian, Nasime ; Sadeghi, Morteza ; Sanaeinejad, Seyed Hossein ; Bakhshian, Elham ; Farid, Ali ; Hasheminia, Seyed Majid ; Ghazanfari, Sadegh</creatorcontrib><description>Remote sensing has shown an immense capability for large‐scale estimation of air temperature (Tair), one of the most important environmental state variables, using land surface temperature (LST) data. Following recent investigations on the Tair–LST relationship, in this article, we propose an advanced statistical approach to this realm. We tested the approach for estimation of Tair in eastern part of Iran using MODIS daytime and nighttime LST products and 11 auxiliary variables including Julian day, solar zenith angle, extraterrestrial solar radiation, latitude, altitude, reflectance at various visible and infrared bands and vegetation indices. Fourteen statistical models constructed through a stepwise regression analysis were evaluated along a 5‐year period (2000–2004) using MODIS and meteorological station data. Results of this study indicated that the statistical approach performed reasonably well, where our final proposed model could estimate average Tair with validation mean absolute error of 2.3 and 1.8 °C at daily and weekly scales, respectively. Nighttime LST, Julian day, altitude and solar zenith angle indicated to be the most effective variables capturing most variations of Tair in the study region. Variables influenced by land surface and land cover properties including reflectance at different bands and vegetation indices showed a negligible effect on the Tair‐LST relationship within the study area. It was indicated that the proposed models generally performed better for lower altitude regions.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.4766</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Air temperature ; Altitude ; Extraterrestrial materials ; Extraterrestrial radiation ; Frameworks ; Land cover ; Land surface temperature ; Mathematical models ; MODIS ; Night ; Night-time ; Nighttime ; Reflectance ; Regression analysis ; Remote sensing ; Solar radiation ; Statistical analysis ; Statistical models ; Surface temperature ; Temperature ; Temperature data ; Temperature effects ; Vegetation ; Weather stations ; Zenith</subject><ispartof>International journal of climatology, 2017-03, Vol.37 (3), p.1181-1194</ispartof><rights>2016 Royal Meteorological Society</rights><rights>2017 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-deafaa826bb0df538ae2f382b7b44a189a4448a60684a3e6a148aae8e2e32ae23</citedby><cites>FETCH-LOGICAL-c3546-deafaa826bb0df538ae2f382b7b44a189a4448a60684a3e6a148aae8e2e32ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.4766$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.4766$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Janatian, Nasime</creatorcontrib><creatorcontrib>Sadeghi, Morteza</creatorcontrib><creatorcontrib>Sanaeinejad, Seyed Hossein</creatorcontrib><creatorcontrib>Bakhshian, Elham</creatorcontrib><creatorcontrib>Farid, Ali</creatorcontrib><creatorcontrib>Hasheminia, Seyed Majid</creatorcontrib><creatorcontrib>Ghazanfari, Sadegh</creatorcontrib><title>A statistical framework for estimating air temperature using MODIS land surface temperature data</title><title>International journal of climatology</title><description>Remote sensing has shown an immense capability for large‐scale estimation of air temperature (Tair), one of the most important environmental state variables, using land surface temperature (LST) data. Following recent investigations on the Tair–LST relationship, in this article, we propose an advanced statistical approach to this realm. We tested the approach for estimation of Tair in eastern part of Iran using MODIS daytime and nighttime LST products and 11 auxiliary variables including Julian day, solar zenith angle, extraterrestrial solar radiation, latitude, altitude, reflectance at various visible and infrared bands and vegetation indices. Fourteen statistical models constructed through a stepwise regression analysis were evaluated along a 5‐year period (2000–2004) using MODIS and meteorological station data. Results of this study indicated that the statistical approach performed reasonably well, where our final proposed model could estimate average Tair with validation mean absolute error of 2.3 and 1.8 °C at daily and weekly scales, respectively. Nighttime LST, Julian day, altitude and solar zenith angle indicated to be the most effective variables capturing most variations of Tair in the study region. Variables influenced by land surface and land cover properties including reflectance at different bands and vegetation indices showed a negligible effect on the Tair‐LST relationship within the study area. It was indicated that the proposed models generally performed better for lower altitude regions.</description><subject>Air temperature</subject><subject>Altitude</subject><subject>Extraterrestrial materials</subject><subject>Extraterrestrial radiation</subject><subject>Frameworks</subject><subject>Land cover</subject><subject>Land surface temperature</subject><subject>Mathematical models</subject><subject>MODIS</subject><subject>Night</subject><subject>Night-time</subject><subject>Nighttime</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Solar radiation</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Vegetation</subject><subject>Weather stations</subject><subject>Zenith</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90d9LwzAQB_AgCs4p-CcEfPGlM2my9Po45q-Jsgf1uV7bi3S260xaxv57MyeIgj6FXD5JvtwxdirFSAoRXyzaYqQTY_bYQIo0iYQA2GcDAWkagZZwyI68Xwgh0lSaAXuZcN9hV_muKrDm1mFD69a9cds6TqHahMPlK8fK8Y6aFTnseke899vqw_xy9shrXJbc985iQT9QiR0eswOLtaeTr3XInq-vnqa30f38Zjad3EeFGmsTlYQWEWKT56K0YwVIsVUQ50muNUpIUWsNaIQBjYoMyrBDAopJxcGqITvfvbty7XsfkmdN5QuqQzhqe59JSBKIZehJoGe_6KLt3TKky2QqlJGgTPKvgkRp0Gasv78tXOu9I5utXOiZ22RSZNuBhFtFth1IoNGOrquaNn-67G4-_fQfbZCL7g</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Janatian, Nasime</creator><creator>Sadeghi, Morteza</creator><creator>Sanaeinejad, Seyed Hossein</creator><creator>Bakhshian, Elham</creator><creator>Farid, Ali</creator><creator>Hasheminia, Seyed Majid</creator><creator>Ghazanfari, Sadegh</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20170315</creationdate><title>A statistical framework for estimating air temperature using MODIS land surface temperature data</title><author>Janatian, Nasime ; Sadeghi, Morteza ; Sanaeinejad, Seyed Hossein ; Bakhshian, Elham ; Farid, Ali ; Hasheminia, Seyed Majid ; Ghazanfari, Sadegh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-deafaa826bb0df538ae2f382b7b44a189a4448a60684a3e6a148aae8e2e32ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air temperature</topic><topic>Altitude</topic><topic>Extraterrestrial materials</topic><topic>Extraterrestrial radiation</topic><topic>Frameworks</topic><topic>Land cover</topic><topic>Land surface temperature</topic><topic>Mathematical models</topic><topic>MODIS</topic><topic>Night</topic><topic>Night-time</topic><topic>Nighttime</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Solar radiation</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Vegetation</topic><topic>Weather stations</topic><topic>Zenith</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janatian, Nasime</creatorcontrib><creatorcontrib>Sadeghi, Morteza</creatorcontrib><creatorcontrib>Sanaeinejad, Seyed Hossein</creatorcontrib><creatorcontrib>Bakhshian, Elham</creatorcontrib><creatorcontrib>Farid, Ali</creatorcontrib><creatorcontrib>Hasheminia, Seyed Majid</creatorcontrib><creatorcontrib>Ghazanfari, Sadegh</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janatian, Nasime</au><au>Sadeghi, Morteza</au><au>Sanaeinejad, Seyed Hossein</au><au>Bakhshian, Elham</au><au>Farid, Ali</au><au>Hasheminia, Seyed Majid</au><au>Ghazanfari, Sadegh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical framework for estimating air temperature using MODIS land surface temperature data</atitle><jtitle>International journal of climatology</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>37</volume><issue>3</issue><spage>1181</spage><epage>1194</epage><pages>1181-1194</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>Remote sensing has shown an immense capability for large‐scale estimation of air temperature (Tair), one of the most important environmental state variables, using land surface temperature (LST) data. Following recent investigations on the Tair–LST relationship, in this article, we propose an advanced statistical approach to this realm. We tested the approach for estimation of Tair in eastern part of Iran using MODIS daytime and nighttime LST products and 11 auxiliary variables including Julian day, solar zenith angle, extraterrestrial solar radiation, latitude, altitude, reflectance at various visible and infrared bands and vegetation indices. Fourteen statistical models constructed through a stepwise regression analysis were evaluated along a 5‐year period (2000–2004) using MODIS and meteorological station data. Results of this study indicated that the statistical approach performed reasonably well, where our final proposed model could estimate average Tair with validation mean absolute error of 2.3 and 1.8 °C at daily and weekly scales, respectively. Nighttime LST, Julian day, altitude and solar zenith angle indicated to be the most effective variables capturing most variations of Tair in the study region. Variables influenced by land surface and land cover properties including reflectance at different bands and vegetation indices showed a negligible effect on the Tair‐LST relationship within the study area. It was indicated that the proposed models generally performed better for lower altitude regions.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/joc.4766</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2017-03, Vol.37 (3), p.1181-1194 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877821109 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air temperature Altitude Extraterrestrial materials Extraterrestrial radiation Frameworks Land cover Land surface temperature Mathematical models MODIS Night Night-time Nighttime Reflectance Regression analysis Remote sensing Solar radiation Statistical analysis Statistical models Surface temperature Temperature Temperature data Temperature effects Vegetation Weather stations Zenith |
title | A statistical framework for estimating air temperature using MODIS land surface temperature data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20framework%20for%20estimating%20air%20temperature%20using%20MODIS%20land%20surface%20temperature%20data&rft.jtitle=International%20journal%20of%20climatology&rft.au=Janatian,%20Nasime&rft.date=2017-03-15&rft.volume=37&rft.issue=3&rft.spage=1181&rft.epage=1194&rft.pages=1181-1194&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.4766&rft_dat=%3Cproquest_cross%3E1903618367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873484654&rft_id=info:pmid/&rfr_iscdi=true |