PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES
Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neu...
Gespeichert in:
Veröffentlicht in: | European journal of sustainable development 2017-01, Vol.6 (1), p.42-42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | European journal of sustainable development |
container_volume | 6 |
creator | Chirita, Mioara Sarpe, Daniela Ancuta Cristache, Nicoleta Micu, Adrian Capatina, Alexandru |
description | Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs. |
doi_str_mv | 10.14207/ejsd.2017.v6n1p42 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877817363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318024801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-8100f3064b8d2c59d8f8391643440968206db9fa655f98bb69ac5ef9951452583</originalsourceid><addsrcrecordid>eNpdkU1vgkAQQEnTJjWtf6CnTXrpBbsf7LJ7xHWFTRAsQhpPBBASjYpltUn_faF66mkmM28mk3mW9YLgBDkYuu_1zmwmGCJ38s2O6OTgO2uEMRE2QxDd33IqCH-0xsbsIIQIun0Rj6zTMlEzLVMd-SANFFAyjuKFlkAvlp5MQTwH2WpoJipSn9407JFIJf4aTNdgEc9UGF5HkzjzA-AlqZ5rqb0Q6Cgdmr6KpAKpkkGkPzK1erYemmJv6vEtPlnZXKUysMPY19IL7QpxcbY5grAhkDkl3-CKig1vOBGIOcRxoGAcQ7YpRVMwShvBy5KJoqJ1IwRFDsWUkyfr7br31LVfl9qc88PWVPV-Xxzr9mJyxF2XI5cw0qOv_9Bde-mO_XUDRfonckZ7Cl-pqmuN6eomP3XbQ9H95Ajmfx7ywUM-eMhvHsgvJwJxcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873610865</pqid></control><display><type>article</type><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</creator><creatorcontrib>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</creatorcontrib><description>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</description><identifier>ISSN: 2239-5938</identifier><identifier>EISSN: 2239-6101</identifier><identifier>DOI: 10.14207/ejsd.2017.v6n1p42</identifier><language>eng</language><publisher>Rome: European Center of Sustainable Development</publisher><subject>Alternative energy sources ; Artificial intelligence ; Consumption ; Economic growth ; Energy resources ; Fossil fuels ; Hypotheses ; Natural gas ; Neural networks ; Statistical methods ; Studies ; Supplies</subject><ispartof>European journal of sustainable development, 2017-01, Vol.6 (1), p.42-42</ispartof><rights>Copyright European Center of Sustainable Development 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chirita, Mioara</creatorcontrib><creatorcontrib>Sarpe, Daniela Ancuta</creatorcontrib><creatorcontrib>Cristache, Nicoleta</creatorcontrib><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Capatina, Alexandru</creatorcontrib><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><title>European journal of sustainable development</title><description>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</description><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Consumption</subject><subject>Economic growth</subject><subject>Energy resources</subject><subject>Fossil fuels</subject><subject>Hypotheses</subject><subject>Natural gas</subject><subject>Neural networks</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Supplies</subject><issn>2239-5938</issn><issn>2239-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vgkAQQEnTJjWtf6CnTXrpBbsf7LJ7xHWFTRAsQhpPBBASjYpltUn_faF66mkmM28mk3mW9YLgBDkYuu_1zmwmGCJ38s2O6OTgO2uEMRE2QxDd33IqCH-0xsbsIIQIun0Rj6zTMlEzLVMd-SANFFAyjuKFlkAvlp5MQTwH2WpoJipSn9407JFIJf4aTNdgEc9UGF5HkzjzA-AlqZ5rqb0Q6Cgdmr6KpAKpkkGkPzK1erYemmJv6vEtPlnZXKUysMPY19IL7QpxcbY5grAhkDkl3-CKig1vOBGIOcRxoGAcQ7YpRVMwShvBy5KJoqJ1IwRFDsWUkyfr7br31LVfl9qc88PWVPV-Xxzr9mJyxF2XI5cw0qOv_9Bde-mO_XUDRfonckZ7Cl-pqmuN6eomP3XbQ9H95Ajmfx7ywUM-eMhvHsgvJwJxcg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Chirita, Mioara</creator><creator>Sarpe, Daniela Ancuta</creator><creator>Cristache, Nicoleta</creator><creator>Micu, Adrian</creator><creator>Capatina, Alexandru</creator><general>European Center of Sustainable Development</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20170101</creationdate><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><author>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-8100f3064b8d2c59d8f8391643440968206db9fa655f98bb69ac5ef9951452583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Consumption</topic><topic>Economic growth</topic><topic>Energy resources</topic><topic>Fossil fuels</topic><topic>Hypotheses</topic><topic>Natural gas</topic><topic>Neural networks</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Supplies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirita, Mioara</creatorcontrib><creatorcontrib>Sarpe, Daniela Ancuta</creatorcontrib><creatorcontrib>Cristache, Nicoleta</creatorcontrib><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Capatina, Alexandru</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>European journal of sustainable development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirita, Mioara</au><au>Sarpe, Daniela Ancuta</au><au>Cristache, Nicoleta</au><au>Micu, Adrian</au><au>Capatina, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</atitle><jtitle>European journal of sustainable development</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>1</issue><spage>42</spage><epage>42</epage><pages>42-42</pages><issn>2239-5938</issn><eissn>2239-6101</eissn><abstract>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</abstract><cop>Rome</cop><pub>European Center of Sustainable Development</pub><doi>10.14207/ejsd.2017.v6n1p42</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2239-5938 |
ispartof | European journal of sustainable development, 2017-01, Vol.6 (1), p.42-42 |
issn | 2239-5938 2239-6101 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877817363 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Alternative energy sources Artificial intelligence Consumption Economic growth Energy resources Fossil fuels Hypotheses Natural gas Neural networks Statistical methods Studies Supplies |
title | PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTING%20THE%20ECONOMIC%20IMPACT%20OF%20USING%20RENEWABLE%20ENERGY%20BY%20MODELLING%20THROUGH%20ARTIFICIAL%20INTELLIGENCE%20TECHNIQUES&rft.jtitle=European%20journal%20of%20sustainable%20development&rft.au=Chirita,%20Mioara&rft.date=2017-01-01&rft.volume=6&rft.issue=1&rft.spage=42&rft.epage=42&rft.pages=42-42&rft.issn=2239-5938&rft.eissn=2239-6101&rft_id=info:doi/10.14207/ejsd.2017.v6n1p42&rft_dat=%3Cproquest_cross%3E4318024801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873610865&rft_id=info:pmid/&rfr_iscdi=true |