PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES

Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of sustainable development 2017-01, Vol.6 (1), p.42-42
Hauptverfasser: Chirita, Mioara, Sarpe, Daniela Ancuta, Cristache, Nicoleta, Micu, Adrian, Capatina, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 42
container_title European journal of sustainable development
container_volume 6
creator Chirita, Mioara
Sarpe, Daniela Ancuta
Cristache, Nicoleta
Micu, Adrian
Capatina, Alexandru
description Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.
doi_str_mv 10.14207/ejsd.2017.v6n1p42
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877817363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318024801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-8100f3064b8d2c59d8f8391643440968206db9fa655f98bb69ac5ef9951452583</originalsourceid><addsrcrecordid>eNpdkU1vgkAQQEnTJjWtf6CnTXrpBbsf7LJ7xHWFTRAsQhpPBBASjYpltUn_faF66mkmM28mk3mW9YLgBDkYuu_1zmwmGCJ38s2O6OTgO2uEMRE2QxDd33IqCH-0xsbsIIQIun0Rj6zTMlEzLVMd-SANFFAyjuKFlkAvlp5MQTwH2WpoJipSn9407JFIJf4aTNdgEc9UGF5HkzjzA-AlqZ5rqb0Q6Cgdmr6KpAKpkkGkPzK1erYemmJv6vEtPlnZXKUysMPY19IL7QpxcbY5grAhkDkl3-CKig1vOBGIOcRxoGAcQ7YpRVMwShvBy5KJoqJ1IwRFDsWUkyfr7br31LVfl9qc88PWVPV-Xxzr9mJyxF2XI5cw0qOv_9Bde-mO_XUDRfonckZ7Cl-pqmuN6eomP3XbQ9H95Ajmfx7ywUM-eMhvHsgvJwJxcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873610865</pqid></control><display><type>article</type><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</creator><creatorcontrib>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</creatorcontrib><description>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</description><identifier>ISSN: 2239-5938</identifier><identifier>EISSN: 2239-6101</identifier><identifier>DOI: 10.14207/ejsd.2017.v6n1p42</identifier><language>eng</language><publisher>Rome: European Center of Sustainable Development</publisher><subject>Alternative energy sources ; Artificial intelligence ; Consumption ; Economic growth ; Energy resources ; Fossil fuels ; Hypotheses ; Natural gas ; Neural networks ; Statistical methods ; Studies ; Supplies</subject><ispartof>European journal of sustainable development, 2017-01, Vol.6 (1), p.42-42</ispartof><rights>Copyright European Center of Sustainable Development 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chirita, Mioara</creatorcontrib><creatorcontrib>Sarpe, Daniela Ancuta</creatorcontrib><creatorcontrib>Cristache, Nicoleta</creatorcontrib><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Capatina, Alexandru</creatorcontrib><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><title>European journal of sustainable development</title><description>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</description><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Consumption</subject><subject>Economic growth</subject><subject>Energy resources</subject><subject>Fossil fuels</subject><subject>Hypotheses</subject><subject>Natural gas</subject><subject>Neural networks</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Supplies</subject><issn>2239-5938</issn><issn>2239-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vgkAQQEnTJjWtf6CnTXrpBbsf7LJ7xHWFTRAsQhpPBBASjYpltUn_faF66mkmM28mk3mW9YLgBDkYuu_1zmwmGCJ38s2O6OTgO2uEMRE2QxDd33IqCH-0xsbsIIQIun0Rj6zTMlEzLVMd-SANFFAyjuKFlkAvlp5MQTwH2WpoJipSn9407JFIJf4aTNdgEc9UGF5HkzjzA-AlqZ5rqb0Q6Cgdmr6KpAKpkkGkPzK1erYemmJv6vEtPlnZXKUysMPY19IL7QpxcbY5grAhkDkl3-CKig1vOBGIOcRxoGAcQ7YpRVMwShvBy5KJoqJ1IwRFDsWUkyfr7br31LVfl9qc88PWVPV-Xxzr9mJyxF2XI5cw0qOv_9Bde-mO_XUDRfonckZ7Cl-pqmuN6eomP3XbQ9H95Ajmfx7ywUM-eMhvHsgvJwJxcg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Chirita, Mioara</creator><creator>Sarpe, Daniela Ancuta</creator><creator>Cristache, Nicoleta</creator><creator>Micu, Adrian</creator><creator>Capatina, Alexandru</creator><general>European Center of Sustainable Development</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20170101</creationdate><title>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</title><author>Chirita, Mioara ; Sarpe, Daniela Ancuta ; Cristache, Nicoleta ; Micu, Adrian ; Capatina, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-8100f3064b8d2c59d8f8391643440968206db9fa655f98bb69ac5ef9951452583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Consumption</topic><topic>Economic growth</topic><topic>Energy resources</topic><topic>Fossil fuels</topic><topic>Hypotheses</topic><topic>Natural gas</topic><topic>Neural networks</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Supplies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirita, Mioara</creatorcontrib><creatorcontrib>Sarpe, Daniela Ancuta</creatorcontrib><creatorcontrib>Cristache, Nicoleta</creatorcontrib><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Capatina, Alexandru</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>European journal of sustainable development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirita, Mioara</au><au>Sarpe, Daniela Ancuta</au><au>Cristache, Nicoleta</au><au>Micu, Adrian</au><au>Capatina, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES</atitle><jtitle>European journal of sustainable development</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>1</issue><spage>42</spage><epage>42</epage><pages>42-42</pages><issn>2239-5938</issn><eissn>2239-6101</eissn><abstract>Diversification of energy supplies is one of the main priorities of the energy policy of the developed countries. The major objective of this research is the model for predicting the economic impact of renewable energy using artificial intelligence techniques. This has been achieved by using the neural networks for the various issues related to renewable energy. The designed model consist in identification of those macroeconomic indicators that are required for the database creation, validation and testing in the view of obtaining the smallest error in the validation set for predicting the renewable energy impact upon the economy. The performance of the model was also revealed by comparing control graphs.</abstract><cop>Rome</cop><pub>European Center of Sustainable Development</pub><doi>10.14207/ejsd.2017.v6n1p42</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2239-5938
ispartof European journal of sustainable development, 2017-01, Vol.6 (1), p.42-42
issn 2239-5938
2239-6101
language eng
recordid cdi_proquest_miscellaneous_1877817363
source EZB-FREE-00999 freely available EZB journals
subjects Alternative energy sources
Artificial intelligence
Consumption
Economic growth
Energy resources
Fossil fuels
Hypotheses
Natural gas
Neural networks
Statistical methods
Studies
Supplies
title PREDICTING THE ECONOMIC IMPACT OF USING RENEWABLE ENERGY BY MODELLING THROUGH ARTIFICIAL INTELLIGENCE TECHNIQUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTING%20THE%20ECONOMIC%20IMPACT%20OF%20USING%20RENEWABLE%20ENERGY%20BY%20MODELLING%20THROUGH%20ARTIFICIAL%20INTELLIGENCE%20TECHNIQUES&rft.jtitle=European%20journal%20of%20sustainable%20development&rft.au=Chirita,%20Mioara&rft.date=2017-01-01&rft.volume=6&rft.issue=1&rft.spage=42&rft.epage=42&rft.pages=42-42&rft.issn=2239-5938&rft.eissn=2239-6101&rft_id=info:doi/10.14207/ejsd.2017.v6n1p42&rft_dat=%3Cproquest_cross%3E4318024801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873610865&rft_id=info:pmid/&rfr_iscdi=true