Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine
Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-02, Vol.51 (3), p.1377-1386 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1386 |
---|---|
container_issue | 3 |
container_start_page | 1377 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Jathar, Shantanu H Friedman, Beth Galang, Abril A Link, Michael F Brophy, Patrick Volckens, John Eluri, Sailaja Farmer, Delphine K |
description | Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2–10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA. |
doi_str_mv | 10.1021/acs.est.6b04602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877816769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1857370190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a459t-e629854eedfa00fe01d72eca9658e4944b321abc889d4b5617ae0c95573e7423</originalsourceid><addsrcrecordid>eNqNkc9rFDEcxYModq2evUnAS8HO9ptMfkyOZbtVYaEFe_A2ZDLf2U6dSWoyg_jfN8OuCoLg6Xv5vPflvUfIWwZrBpxdWJfWmKa1akAo4M_IikkOhawke05WAKwsTKm-npBXKT0AAC-heklOeAWagdAr8mPX-2-939NdsO05vZ5xOKfWt3Q79in1wdNN8FMMQ6JToLf3YQruHsfe2YHextDOblqg0NEv6IJvbfxJb-Le-t7RS4whhYF2MYzU0qseEw506_e9x9fkRWeHhG-O95TcXW_vNp-K3c3Hz5vLXWGFNFOBiptKCsS2swAdAms1R2eNkhUKI0RTcmYbV1WmFY1UTFsEZ6TUJWrBy1NydrB9jOH7nJuqcyyHw2A9hjnVrNK6Ykor8x9oNtXADGT0_V_oQ5ijzzkypTRjhsuFujhQLteQInb1Y-zHXFDNoF7Wq_N69aI-rpcV746-czNi-5v_NVcGPhyARfnn5z_sngDyvqRG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867119250</pqid></control><display><type>article</type><title>Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Jathar, Shantanu H ; Friedman, Beth ; Galang, Abril A ; Link, Michael F ; Brophy, Patrick ; Volckens, John ; Eluri, Sailaja ; Farmer, Delphine K</creator><creatorcontrib>Jathar, Shantanu H ; Friedman, Beth ; Galang, Abril A ; Link, Michael F ; Brophy, Patrick ; Volckens, John ; Eluri, Sailaja ; Farmer, Delphine K</creatorcontrib><description>Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2–10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b04602</identifier><identifier>PMID: 28071047</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Biofuels ; Diesel engines ; Diesel fuels ; Emissions ; Gasoline ; Oxidation ; Oxidation-Reduction ; Photochemistry ; Vehicle Emissions</subject><ispartof>Environmental science & technology, 2017-02, Vol.51 (3), p.1377-1386</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a459t-e629854eedfa00fe01d72eca9658e4944b321abc889d4b5617ae0c95573e7423</citedby><cites>FETCH-LOGICAL-a459t-e629854eedfa00fe01d72eca9658e4944b321abc889d4b5617ae0c95573e7423</cites><orcidid>0000-0002-1841-2455 ; 0000-0002-6470-9970 ; 0000-0003-4106-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b04602$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b04602$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jathar, Shantanu H</creatorcontrib><creatorcontrib>Friedman, Beth</creatorcontrib><creatorcontrib>Galang, Abril A</creatorcontrib><creatorcontrib>Link, Michael F</creatorcontrib><creatorcontrib>Brophy, Patrick</creatorcontrib><creatorcontrib>Volckens, John</creatorcontrib><creatorcontrib>Eluri, Sailaja</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><title>Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2–10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.</description><subject>Aerosols</subject><subject>Biofuels</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Emissions</subject><subject>Gasoline</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Photochemistry</subject><subject>Vehicle Emissions</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEcxYModq2evUnAS8HO9ptMfkyOZbtVYaEFe_A2ZDLf2U6dSWoyg_jfN8OuCoLg6Xv5vPflvUfIWwZrBpxdWJfWmKa1akAo4M_IikkOhawke05WAKwsTKm-npBXKT0AAC-heklOeAWagdAr8mPX-2-939NdsO05vZ5xOKfWt3Q79in1wdNN8FMMQ6JToLf3YQruHsfe2YHextDOblqg0NEv6IJvbfxJb-Le-t7RS4whhYF2MYzU0qseEw506_e9x9fkRWeHhG-O95TcXW_vNp-K3c3Hz5vLXWGFNFOBiptKCsS2swAdAms1R2eNkhUKI0RTcmYbV1WmFY1UTFsEZ6TUJWrBy1NydrB9jOH7nJuqcyyHw2A9hjnVrNK6Ykor8x9oNtXADGT0_V_oQ5ijzzkypTRjhsuFujhQLteQInb1Y-zHXFDNoF7Wq_N69aI-rpcV746-czNi-5v_NVcGPhyARfnn5z_sngDyvqRG</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Jathar, Shantanu H</creator><creator>Friedman, Beth</creator><creator>Galang, Abril A</creator><creator>Link, Michael F</creator><creator>Brophy, Patrick</creator><creator>Volckens, John</creator><creator>Eluri, Sailaja</creator><creator>Farmer, Delphine K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1841-2455</orcidid><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0003-4106-2358</orcidid></search><sort><creationdate>20170207</creationdate><title>Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine</title><author>Jathar, Shantanu H ; Friedman, Beth ; Galang, Abril A ; Link, Michael F ; Brophy, Patrick ; Volckens, John ; Eluri, Sailaja ; Farmer, Delphine K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a459t-e629854eedfa00fe01d72eca9658e4944b321abc889d4b5617ae0c95573e7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Biofuels</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Emissions</topic><topic>Gasoline</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Photochemistry</topic><topic>Vehicle Emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jathar, Shantanu H</creatorcontrib><creatorcontrib>Friedman, Beth</creatorcontrib><creatorcontrib>Galang, Abril A</creatorcontrib><creatorcontrib>Link, Michael F</creatorcontrib><creatorcontrib>Brophy, Patrick</creatorcontrib><creatorcontrib>Volckens, John</creatorcontrib><creatorcontrib>Eluri, Sailaja</creatorcontrib><creatorcontrib>Farmer, Delphine K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jathar, Shantanu H</au><au>Friedman, Beth</au><au>Galang, Abril A</au><au>Link, Michael F</au><au>Brophy, Patrick</au><au>Volckens, John</au><au>Eluri, Sailaja</au><au>Farmer, Delphine K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>1377</spage><epage>1386</epage><pages>1377-1386</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2–10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28071047</pmid><doi>10.1021/acs.est.6b04602</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1841-2455</orcidid><orcidid>https://orcid.org/0000-0002-6470-9970</orcidid><orcidid>https://orcid.org/0000-0003-4106-2358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-02, Vol.51 (3), p.1377-1386 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877816769 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aerosols Biofuels Diesel engines Diesel fuels Emissions Gasoline Oxidation Oxidation-Reduction Photochemistry Vehicle Emissions |
title | Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Load,%20Fuel,%20and%20Emission%20Controls%20to%20Photochemical%20Production%20of%20Secondary%20Organic%20Aerosol%20from%20a%20Diesel%20Engine&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Jathar,%20Shantanu%20H&rft.date=2017-02-07&rft.volume=51&rft.issue=3&rft.spage=1377&rft.epage=1386&rft.pages=1377-1386&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.6b04602&rft_dat=%3Cproquest_cross%3E1857370190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867119250&rft_id=info:pmid/28071047&rfr_iscdi=true |