Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater
Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wa...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-02, Vol.51 (3), p.1213-1223 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1223 |
---|---|
container_issue | 3 |
container_start_page | 1213 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Roehrdanz, Patrick R Feraud, Marina Lee, Do Gyun Means, Jay C Snyder, Shane A Holden, Patricia A |
description | Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection. |
doi_str_mv | 10.1021/acs.est.6b05015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877815466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313170831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-9ccfbd9921510d1d42c6beb7b96700b0a57e9c3e3cace3e59a2c09b0982ddcf83</originalsourceid><addsrcrecordid>eNqN0c9rFDEUB_Agil2r595KwEtBZvuSbCaTYyltLay0sBa9Dfnxpp12drJNZlj87824q0JB8JTL5_seL19CjhjMGXB2alyaYxrmpQUJTL4iMyY5FLKS7DWZATBRaFF-PyDvUnoEAC6geksOuNK6Aqlm5Hm1MUNrOvoleOwSDQ1d4RYjvW03SJdonsw90tuIvnUDHR6Q3jg3xoi9wwl_M2nArRly4rrPxgwhJtr2dPVgui5s6V20pqdXMYy9_-XekzeN6RJ-2L-H5O7y4uv552J5c3V9frYszKKEodDONdZrzZlk4JlfcFdatMrqUgFYMFKhdgKFMw4FSm24A21BV9x711TikJzs5m5ieB7zJ9XrNjnsOtNjGFPNKqUqJhdl-R9UMgFCVYtMP76gj2GMfT4kq1Ixprmedp_ulIshpYhNvYnt2sQfNYN6Kq7OxdVTel9cThzv5452jf6P_91UBp92YEr-3fmPcT8BFtGkAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867119298</pqid></control><display><type>article</type><title>Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater</title><source>ACS Publications</source><source>MEDLINE</source><creator>Roehrdanz, Patrick R ; Feraud, Marina ; Lee, Do Gyun ; Means, Jay C ; Snyder, Shane A ; Holden, Patricia A</creator><creatorcontrib>Roehrdanz, Patrick R ; Feraud, Marina ; Lee, Do Gyun ; Means, Jay C ; Snyder, Shane A ; Holden, Patricia A</creatorcontrib><description>Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b05015</identifier><identifier>PMID: 27998057</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Groundwater ; Groundwater - chemistry ; Groundwater pollution ; Infrastructure ; Models, Theoretical ; Public health ; Sweetening Agents ; Urban areas ; Waste Disposal, Fluid ; Waste Water - chemistry ; Water Pollutants, Chemical ; Water quality ; Water treatment</subject><ispartof>Environmental science & technology, 2017-02, Vol.51 (3), p.1213-1223</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-9ccfbd9921510d1d42c6beb7b96700b0a57e9c3e3cace3e59a2c09b0982ddcf83</citedby><cites>FETCH-LOGICAL-a460t-9ccfbd9921510d1d42c6beb7b96700b0a57e9c3e3cace3e59a2c09b0982ddcf83</cites><orcidid>0000-0002-6777-5359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b05015$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b05015$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27998057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roehrdanz, Patrick R</creatorcontrib><creatorcontrib>Feraud, Marina</creatorcontrib><creatorcontrib>Lee, Do Gyun</creatorcontrib><creatorcontrib>Means, Jay C</creatorcontrib><creatorcontrib>Snyder, Shane A</creatorcontrib><creatorcontrib>Holden, Patricia A</creatorcontrib><title>Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.</description><subject>Groundwater</subject><subject>Groundwater - chemistry</subject><subject>Groundwater pollution</subject><subject>Infrastructure</subject><subject>Models, Theoretical</subject><subject>Public health</subject><subject>Sweetening Agents</subject><subject>Urban areas</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Water - chemistry</subject><subject>Water Pollutants, Chemical</subject><subject>Water quality</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9rFDEUB_Agil2r595KwEtBZvuSbCaTYyltLay0sBa9Dfnxpp12drJNZlj87824q0JB8JTL5_seL19CjhjMGXB2alyaYxrmpQUJTL4iMyY5FLKS7DWZATBRaFF-PyDvUnoEAC6geksOuNK6Aqlm5Hm1MUNrOvoleOwSDQ1d4RYjvW03SJdonsw90tuIvnUDHR6Q3jg3xoi9wwl_M2nArRly4rrPxgwhJtr2dPVgui5s6V20pqdXMYy9_-XekzeN6RJ-2L-H5O7y4uv552J5c3V9frYszKKEodDONdZrzZlk4JlfcFdatMrqUgFYMFKhdgKFMw4FSm24A21BV9x711TikJzs5m5ieB7zJ9XrNjnsOtNjGFPNKqUqJhdl-R9UMgFCVYtMP76gj2GMfT4kq1Ixprmedp_ulIshpYhNvYnt2sQfNYN6Kq7OxdVTel9cThzv5452jf6P_91UBp92YEr-3fmPcT8BFtGkAQ</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Roehrdanz, Patrick R</creator><creator>Feraud, Marina</creator><creator>Lee, Do Gyun</creator><creator>Means, Jay C</creator><creator>Snyder, Shane A</creator><creator>Holden, Patricia A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6777-5359</orcidid></search><sort><creationdate>20170207</creationdate><title>Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater</title><author>Roehrdanz, Patrick R ; Feraud, Marina ; Lee, Do Gyun ; Means, Jay C ; Snyder, Shane A ; Holden, Patricia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-9ccfbd9921510d1d42c6beb7b96700b0a57e9c3e3cace3e59a2c09b0982ddcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Groundwater</topic><topic>Groundwater - chemistry</topic><topic>Groundwater pollution</topic><topic>Infrastructure</topic><topic>Models, Theoretical</topic><topic>Public health</topic><topic>Sweetening Agents</topic><topic>Urban areas</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Water - chemistry</topic><topic>Water Pollutants, Chemical</topic><topic>Water quality</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roehrdanz, Patrick R</creatorcontrib><creatorcontrib>Feraud, Marina</creatorcontrib><creatorcontrib>Lee, Do Gyun</creatorcontrib><creatorcontrib>Means, Jay C</creatorcontrib><creatorcontrib>Snyder, Shane A</creatorcontrib><creatorcontrib>Holden, Patricia A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roehrdanz, Patrick R</au><au>Feraud, Marina</au><au>Lee, Do Gyun</au><au>Means, Jay C</au><au>Snyder, Shane A</au><au>Holden, Patricia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>1213</spage><epage>1223</epage><pages>1213-1223</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27998057</pmid><doi>10.1021/acs.est.6b05015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6777-5359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-02, Vol.51 (3), p.1213-1223 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877815466 |
source | ACS Publications; MEDLINE |
subjects | Groundwater Groundwater - chemistry Groundwater pollution Infrastructure Models, Theoretical Public health Sweetening Agents Urban areas Waste Disposal, Fluid Waste Water - chemistry Water Pollutants, Chemical Water quality Water treatment |
title | Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Models%20of%20Sewer%20Pipe%20Leakage%20Predict%20the%20Occurrence%20of%20Wastewater%20Indicators%20in%20Shallow%20Urban%20Groundwater&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Roehrdanz,%20Patrick%20R&rft.date=2017-02-07&rft.volume=51&rft.issue=3&rft.spage=1213&rft.epage=1223&rft.pages=1213-1223&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.6b05015&rft_dat=%3Cproquest_cross%3E4313170831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867119298&rft_id=info:pmid/27998057&rfr_iscdi=true |