Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells
Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2015-06, Vol.5 (11), p.np-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | np |
container_title | Advanced energy materials |
container_volume | 5 |
creator | Burke, Timothy M. Sweetnam, Sean Vandewal, Koen McGehee, Michael D. |
description | Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.
Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder. |
doi_str_mv | 10.1002/aenm.201500123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877811289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3704364981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</originalsourceid><addsrcrecordid>eNqFkUFv0zAUxyMEEtPYlbMlLlzS2bEdJ9y20K1IpRW0sKP1kr52Hond2Q6lX2WfdqmKKsRl7-J3-P3-etY_Sd4zOmKUZpeAthtllElKWcZfJWcsZyLNC0Ffn3aevU0uQnigw4iSUc7Pkqdr3Du7IlOwG_xtLPmOjetqYyEaZz-RiduR8WNvWlN703fkGuMO0ZIbj0gq8N6gDwSGhOoe_AbJ0oMNa_RkESFiIJ8xou-MHdZ4j2S-RZtWxje9ieSnayMMjluTud-ANQ1ZuBY8qbBtw7vkzRragBd_3_Pkx814WU3S6fz2S3U1TRspFU95zkoohYBVCYWQJaf1igEiipo3RZmvRIaCIpWZRCUaBVkma1kLgFzUa874efLxmLv17rHHEHVnQjNcABZdHzQrlCoYy4ryZVQpynNZFIfUD_-hD673dviIZnkhVcZKdaBGR6rxLgSPa731pgO_14zqQ7H6UKw-FTsI5VHYmRb3L9D6ajz7-q-bHl0TIv45ueB_6VxxJfXd7FbP8rtvi2qy1FP-DBW0tpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685721971</pqid></control><display><type>article</type><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</creator><creatorcontrib>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</creatorcontrib><description>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.
Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201500123</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Carriers ; Charge transfer ; charge transfer states ; Disorders ; Electric potential ; Equilibrium ; open-circuit voltage ; organic photovoltaics ; Photovoltaic cells ; reduced Langevin recombination ; Solar cells ; Solar energy ; Volatile organic compounds ; Voltage</subject><ispartof>Advanced energy materials, 2015-06, Vol.5 (11), p.np-n/a</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</citedby><cites>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201500123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201500123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Burke, Timothy M.</creatorcontrib><creatorcontrib>Sweetnam, Sean</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.
Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</description><subject>Carriers</subject><subject>Charge transfer</subject><subject>charge transfer states</subject><subject>Disorders</subject><subject>Electric potential</subject><subject>Equilibrium</subject><subject>open-circuit voltage</subject><subject>organic photovoltaics</subject><subject>Photovoltaic cells</subject><subject>reduced Langevin recombination</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Volatile organic compounds</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAUxyMEEtPYlbMlLlzS2bEdJ9y20K1IpRW0sKP1kr52Hond2Q6lX2WfdqmKKsRl7-J3-P3-etY_Sd4zOmKUZpeAthtllElKWcZfJWcsZyLNC0Ffn3aevU0uQnigw4iSUc7Pkqdr3Du7IlOwG_xtLPmOjetqYyEaZz-RiduR8WNvWlN703fkGuMO0ZIbj0gq8N6gDwSGhOoe_AbJ0oMNa_RkESFiIJ8xou-MHdZ4j2S-RZtWxje9ieSnayMMjluTud-ANQ1ZuBY8qbBtw7vkzRragBd_3_Pkx814WU3S6fz2S3U1TRspFU95zkoohYBVCYWQJaf1igEiipo3RZmvRIaCIpWZRCUaBVkma1kLgFzUa874efLxmLv17rHHEHVnQjNcABZdHzQrlCoYy4ryZVQpynNZFIfUD_-hD673dviIZnkhVcZKdaBGR6rxLgSPa731pgO_14zqQ7H6UKw-FTsI5VHYmRb3L9D6ajz7-q-bHl0TIv45ueB_6VxxJfXd7FbP8rtvi2qy1FP-DBW0tpE</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Burke, Timothy M.</creator><creator>Sweetnam, Sean</creator><creator>Vandewal, Koen</creator><creator>McGehee, Michael D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SU</scope><scope>C1K</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20150601</creationdate><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><author>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carriers</topic><topic>Charge transfer</topic><topic>charge transfer states</topic><topic>Disorders</topic><topic>Electric potential</topic><topic>Equilibrium</topic><topic>open-circuit voltage</topic><topic>organic photovoltaics</topic><topic>Photovoltaic cells</topic><topic>reduced Langevin recombination</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Volatile organic compounds</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Timothy M.</creatorcontrib><creatorcontrib>Sweetnam, Sean</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Timothy M.</au><au>Sweetnam, Sean</au><au>Vandewal, Koen</au><au>McGehee, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>5</volume><issue>11</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.
Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201500123</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2015-06, Vol.5 (11), p.np-n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877811289 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carriers Charge transfer charge transfer states Disorders Electric potential Equilibrium open-circuit voltage organic photovoltaics Photovoltaic cells reduced Langevin recombination Solar cells Solar energy Volatile organic compounds Voltage |
title | Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Langevin%20Recombination:%20How%20Equilibrium%20Between%20Free%20Carriers%20and%20Charge%20Transfer%20States%20Determines%20the%20Open-Circuit%20Voltage%20of%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Burke,%20Timothy%20M.&rft.date=2015-06-01&rft.volume=5&rft.issue=11&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201500123&rft_dat=%3Cproquest_cross%3E3704364981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685721971&rft_id=info:pmid/&rfr_iscdi=true |