Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells

Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2015-06, Vol.5 (11), p.np-n/a
Hauptverfasser: Burke, Timothy M., Sweetnam, Sean, Vandewal, Koen, McGehee, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page np
container_title Advanced energy materials
container_volume 5
creator Burke, Timothy M.
Sweetnam, Sean
Vandewal, Koen
McGehee, Michael D.
description Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved. Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.
doi_str_mv 10.1002/aenm.201500123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877811289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3704364981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</originalsourceid><addsrcrecordid>eNqFkUFv0zAUxyMEEtPYlbMlLlzS2bEdJ9y20K1IpRW0sKP1kr52Hond2Q6lX2WfdqmKKsRl7-J3-P3-etY_Sd4zOmKUZpeAthtllElKWcZfJWcsZyLNC0Ffn3aevU0uQnigw4iSUc7Pkqdr3Du7IlOwG_xtLPmOjetqYyEaZz-RiduR8WNvWlN703fkGuMO0ZIbj0gq8N6gDwSGhOoe_AbJ0oMNa_RkESFiIJ8xou-MHdZ4j2S-RZtWxje9ieSnayMMjluTud-ANQ1ZuBY8qbBtw7vkzRragBd_3_Pkx814WU3S6fz2S3U1TRspFU95zkoohYBVCYWQJaf1igEiipo3RZmvRIaCIpWZRCUaBVkma1kLgFzUa874efLxmLv17rHHEHVnQjNcABZdHzQrlCoYy4ryZVQpynNZFIfUD_-hD673dviIZnkhVcZKdaBGR6rxLgSPa731pgO_14zqQ7H6UKw-FTsI5VHYmRb3L9D6ajz7-q-bHl0TIv45ueB_6VxxJfXd7FbP8rtvi2qy1FP-DBW0tpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685721971</pqid></control><display><type>article</type><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</creator><creatorcontrib>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</creatorcontrib><description>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved. Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201500123</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Carriers ; Charge transfer ; charge transfer states ; Disorders ; Electric potential ; Equilibrium ; open-circuit voltage ; organic photovoltaics ; Photovoltaic cells ; reduced Langevin recombination ; Solar cells ; Solar energy ; Volatile organic compounds ; Voltage</subject><ispartof>Advanced energy materials, 2015-06, Vol.5 (11), p.np-n/a</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</citedby><cites>FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201500123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201500123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Burke, Timothy M.</creatorcontrib><creatorcontrib>Sweetnam, Sean</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved. Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</description><subject>Carriers</subject><subject>Charge transfer</subject><subject>charge transfer states</subject><subject>Disorders</subject><subject>Electric potential</subject><subject>Equilibrium</subject><subject>open-circuit voltage</subject><subject>organic photovoltaics</subject><subject>Photovoltaic cells</subject><subject>reduced Langevin recombination</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Volatile organic compounds</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAUxyMEEtPYlbMlLlzS2bEdJ9y20K1IpRW0sKP1kr52Hond2Q6lX2WfdqmKKsRl7-J3-P3-etY_Sd4zOmKUZpeAthtllElKWcZfJWcsZyLNC0Ffn3aevU0uQnigw4iSUc7Pkqdr3Du7IlOwG_xtLPmOjetqYyEaZz-RiduR8WNvWlN703fkGuMO0ZIbj0gq8N6gDwSGhOoe_AbJ0oMNa_RkESFiIJ8xou-MHdZ4j2S-RZtWxje9ieSnayMMjluTud-ANQ1ZuBY8qbBtw7vkzRragBd_3_Pkx814WU3S6fz2S3U1TRspFU95zkoohYBVCYWQJaf1igEiipo3RZmvRIaCIpWZRCUaBVkma1kLgFzUa874efLxmLv17rHHEHVnQjNcABZdHzQrlCoYy4ryZVQpynNZFIfUD_-hD673dviIZnkhVcZKdaBGR6rxLgSPa731pgO_14zqQ7H6UKw-FTsI5VHYmRb3L9D6ajz7-q-bHl0TIv45ueB_6VxxJfXd7FbP8rtvi2qy1FP-DBW0tpE</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Burke, Timothy M.</creator><creator>Sweetnam, Sean</creator><creator>Vandewal, Koen</creator><creator>McGehee, Michael D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SU</scope><scope>C1K</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20150601</creationdate><title>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</title><author>Burke, Timothy M. ; Sweetnam, Sean ; Vandewal, Koen ; McGehee, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5573-3619a944ad9a845930bd1aeee4b3c896d42e40e0525e74c7a225b5b4aa64bf313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carriers</topic><topic>Charge transfer</topic><topic>charge transfer states</topic><topic>Disorders</topic><topic>Electric potential</topic><topic>Equilibrium</topic><topic>open-circuit voltage</topic><topic>organic photovoltaics</topic><topic>Photovoltaic cells</topic><topic>reduced Langevin recombination</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Volatile organic compounds</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Timothy M.</creatorcontrib><creatorcontrib>Sweetnam, Sean</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Timothy M.</au><au>Sweetnam, Sean</au><au>Vandewal, Koen</au><au>McGehee, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>5</volume><issue>11</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved. Low open‐circuit voltages are one of the primary factors limiting organic photovoltaic efficiencies. This work presents a comprehensive framework for understanding and improving the voltage of organic solar cells. It explains why qVoc is almost always 0.5–0.7 eV below the apparent CT state energy and provides an experimental method to quantify the voltage loss due to energetic disorder.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201500123</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2015-06, Vol.5 (11), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1877811289
source Wiley Online Library Journals Frontfile Complete
subjects Carriers
Charge transfer
charge transfer states
Disorders
Electric potential
Equilibrium
open-circuit voltage
organic photovoltaics
Photovoltaic cells
reduced Langevin recombination
Solar cells
Solar energy
Volatile organic compounds
Voltage
title Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Langevin%20Recombination:%20How%20Equilibrium%20Between%20Free%20Carriers%20and%20Charge%20Transfer%20States%20Determines%20the%20Open-Circuit%20Voltage%20of%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Burke,%20Timothy%20M.&rft.date=2015-06-01&rft.volume=5&rft.issue=11&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201500123&rft_dat=%3Cproquest_cross%3E3704364981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685721971&rft_id=info:pmid/&rfr_iscdi=true