Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene
Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, size...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Energy and environment 2014-09, Vol.3 (5), p.424-473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | 5 |
container_start_page | 424 |
container_title | Wiley interdisciplinary reviews. Energy and environment |
container_volume | 3 |
creator | Gu, Wentian Yushin, Gleb |
description | Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Infrastructure > Science and Materials
Energy and Development > Science and Materials
Energy Research & Innovation > Science and Materials |
doi_str_mv | 10.1002/wene.102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877810325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3788656041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEElWpxE-IxIUDAX8kTsINrbZbpFJEVdHeLMceb906cbCdXcpP54TD0uVL4MuMZh7PO2NPlj3F6CVGiLzawgDJIw-yA4JKXDQlunp479OWPc6OQrhB6TSYlSU7yL6ew8bANnc6H8TgQvSTjJMHlUvhOzfkvYjgjbAh187nYEFG7-Q19EYKm6BRSBNTRoyjTaFo3BBe50JtxBDFGkIuBpVb05u4y81KQkazSXXvRV58t0ZBoZLW5pf4F3DWRCgi9KP960ZqT4B3a7BhH5iniFMHKeKGJFhYcwv7W3Mzay_G6_RQT7JHOs0FRz_sYXZxvLxYnBSn71dvF29OC1mRhhSEMapRqXVJlZQdtJRQqkBTooGotm0VbrWsKOow0apuWF12SmJCO8ZEQg-z57uyo3efJgiR9yZIsFYM4KbAcVPXDUaUVAl99gd64yY_pOY4Sd_bsqZt2f8oXKOaVm3V1D9lpXcheNB89KYX_o5jxOdl4fOyJI8ktNihW2Ph7p8cv1yeLX_jTYjwec8Lf8tZTeuKX56t-NVi9eHk_B3lH-k3VajWGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707359587</pqid></control><display><type>article</type><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Wentian ; Yushin, Gleb</creator><creatorcontrib>Gu, Wentian ; Yushin, Gleb</creatorcontrib><description>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Infrastructure > Science and Materials
Energy and Development > Science and Materials
Energy Research & Innovation > Science and Materials</description><identifier>ISSN: 2041-8396</identifier><identifier>EISSN: 2041-840X</identifier><identifier>DOI: 10.1002/wene.102</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Activated carbon ; Aerogels ; Capacitance ; Capacitors ; Carbides ; Carbon ; Carbon nanotubes ; Conflicts of interest ; Curvature ; Distributed generation ; Electric double layer ; Electric power distribution ; Electric vehicles ; Electrical conductivity ; Electrical resistivity ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Energy ; Energy efficiency ; Energy management ; Energy research ; Energy storage ; Fuel technology ; Functional groups ; Graphene ; Hybrid vehicles ; Hydrogen storage ; Hydrogen-based energy ; Industrial equipment ; Innovations ; Interfacial energy ; Nanostructured materials ; Nanotechnology ; Nanotubes ; Pore size ; Porosity ; Power management ; Power plants ; Ships ; Size distribution ; Surface area ; Uninterruptible power supplies ; Wind power ; Zeolites</subject><ispartof>Wiley interdisciplinary reviews. Energy and environment, 2014-09, Vol.3 (5), p.424-473</ispartof><rights>2014 John Wiley & Sons, Ltd</rights><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</citedby><cites>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwene.102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwene.102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gu, Wentian</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><title>Wiley interdisciplinary reviews. Energy and environment</title><addtitle>WIREs Energy Environ</addtitle><description>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Infrastructure > Science and Materials
Energy and Development > Science and Materials
Energy Research & Innovation > Science and Materials</description><subject>Activated carbon</subject><subject>Aerogels</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conflicts of interest</subject><subject>Curvature</subject><subject>Distributed generation</subject><subject>Electric double layer</subject><subject>Electric power distribution</subject><subject>Electric vehicles</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy research</subject><subject>Energy storage</subject><subject>Fuel technology</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Hybrid vehicles</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>Industrial equipment</subject><subject>Innovations</subject><subject>Interfacial energy</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Power management</subject><subject>Power plants</subject><subject>Ships</subject><subject>Size distribution</subject><subject>Surface area</subject><subject>Uninterruptible power supplies</subject><subject>Wind power</subject><subject>Zeolites</subject><issn>2041-8396</issn><issn>2041-840X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEElWpxE-IxIUDAX8kTsINrbZbpFJEVdHeLMceb906cbCdXcpP54TD0uVL4MuMZh7PO2NPlj3F6CVGiLzawgDJIw-yA4JKXDQlunp479OWPc6OQrhB6TSYlSU7yL6ew8bANnc6H8TgQvSTjJMHlUvhOzfkvYjgjbAh187nYEFG7-Q19EYKm6BRSBNTRoyjTaFo3BBe50JtxBDFGkIuBpVb05u4y81KQkazSXXvRV58t0ZBoZLW5pf4F3DWRCgi9KP960ZqT4B3a7BhH5iniFMHKeKGJFhYcwv7W3Mzay_G6_RQT7JHOs0FRz_sYXZxvLxYnBSn71dvF29OC1mRhhSEMapRqXVJlZQdtJRQqkBTooGotm0VbrWsKOow0apuWF12SmJCO8ZEQg-z57uyo3efJgiR9yZIsFYM4KbAcVPXDUaUVAl99gd64yY_pOY4Sd_bsqZt2f8oXKOaVm3V1D9lpXcheNB89KYX_o5jxOdl4fOyJI8ktNihW2Ph7p8cv1yeLX_jTYjwec8Lf8tZTeuKX56t-NVi9eHk_B3lH-k3VajWGw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Gu, Wentian</creator><creator>Yushin, Gleb</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201409</creationdate><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><author>Gu, Wentian ; Yushin, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activated carbon</topic><topic>Aerogels</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conflicts of interest</topic><topic>Curvature</topic><topic>Distributed generation</topic><topic>Electric double layer</topic><topic>Electric power distribution</topic><topic>Electric vehicles</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy research</topic><topic>Energy storage</topic><topic>Fuel technology</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Hybrid vehicles</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>Industrial equipment</topic><topic>Innovations</topic><topic>Interfacial energy</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Power management</topic><topic>Power plants</topic><topic>Ships</topic><topic>Size distribution</topic><topic>Surface area</topic><topic>Uninterruptible power supplies</topic><topic>Wind power</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Wentian</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Wentian</au><au>Yushin, Gleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</atitle><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle><addtitle>WIREs Energy Environ</addtitle><date>2014-09</date><risdate>2014</risdate><volume>3</volume><issue>5</issue><spage>424</spage><epage>473</epage><pages>424-473</pages><issn>2041-8396</issn><eissn>2041-840X</eissn><abstract>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102
This article is categorized under:
Fuel Cells and Hydrogen > Science and Materials
Energy Infrastructure > Science and Materials
Energy and Development > Science and Materials
Energy Research & Innovation > Science and Materials</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wene.102</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8396 |
ispartof | Wiley interdisciplinary reviews. Energy and environment, 2014-09, Vol.3 (5), p.424-473 |
issn | 2041-8396 2041-840X |
language | eng |
recordid | cdi_proquest_miscellaneous_1877810325 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activated carbon Aerogels Capacitance Capacitors Carbides Carbon Carbon nanotubes Conflicts of interest Curvature Distributed generation Electric double layer Electric power distribution Electric vehicles Electrical conductivity Electrical resistivity Electrochemistry Electrolytes Electrolytic cells Energy Energy efficiency Energy management Energy research Energy storage Fuel technology Functional groups Graphene Hybrid vehicles Hydrogen storage Hydrogen-based energy Industrial equipment Innovations Interfacial energy Nanostructured materials Nanotechnology Nanotubes Pore size Porosity Power management Power plants Ships Size distribution Surface area Uninterruptible power supplies Wind power Zeolites |
title | Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20nanostructured%20carbon%20materials%20for%20electrochemical%20capacitor%20applications:%20advantages%20and%20limitations%20of%20activated%20carbon,%20carbide-derived%20carbon,%20zeolite-templated%20carbon,%20carbon%20aerogels,%20carbon%20nanotubes,%20onion-like%20carbon,%20and%20graphene&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Energy%20and%20environment&rft.au=Gu,%20Wentian&rft.date=2014-09&rft.volume=3&rft.issue=5&rft.spage=424&rft.epage=473&rft.pages=424-473&rft.issn=2041-8396&rft.eissn=2041-840X&rft_id=info:doi/10.1002/wene.102&rft_dat=%3Cproquest_cross%3E3788656041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707359587&rft_id=info:pmid/&rfr_iscdi=true |