Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene

Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Energy and environment 2014-09, Vol.3 (5), p.424-473
Hauptverfasser: Gu, Wentian, Yushin, Gleb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue 5
container_start_page 424
container_title Wiley interdisciplinary reviews. Energy and environment
container_volume 3
creator Gu, Wentian
Yushin, Gleb
description Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102 This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Energy Infrastructure > Science and Materials Energy and Development > Science and Materials Energy Research & Innovation > Science and Materials
doi_str_mv 10.1002/wene.102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877810325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3788656041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEElWpxE-IxIUDAX8kTsINrbZbpFJEVdHeLMceb906cbCdXcpP54TD0uVL4MuMZh7PO2NPlj3F6CVGiLzawgDJIw-yA4JKXDQlunp479OWPc6OQrhB6TSYlSU7yL6ew8bANnc6H8TgQvSTjJMHlUvhOzfkvYjgjbAh187nYEFG7-Q19EYKm6BRSBNTRoyjTaFo3BBe50JtxBDFGkIuBpVb05u4y81KQkazSXXvRV58t0ZBoZLW5pf4F3DWRCgi9KP960ZqT4B3a7BhH5iniFMHKeKGJFhYcwv7W3Mzay_G6_RQT7JHOs0FRz_sYXZxvLxYnBSn71dvF29OC1mRhhSEMapRqXVJlZQdtJRQqkBTooGotm0VbrWsKOow0apuWF12SmJCO8ZEQg-z57uyo3efJgiR9yZIsFYM4KbAcVPXDUaUVAl99gd64yY_pOY4Sd_bsqZt2f8oXKOaVm3V1D9lpXcheNB89KYX_o5jxOdl4fOyJI8ktNihW2Ph7p8cv1yeLX_jTYjwec8Lf8tZTeuKX56t-NVi9eHk_B3lH-k3VajWGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707359587</pqid></control><display><type>article</type><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Wentian ; Yushin, Gleb</creator><creatorcontrib>Gu, Wentian ; Yushin, Gleb</creatorcontrib><description>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102 This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Infrastructure &gt; Science and Materials Energy and Development &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</description><identifier>ISSN: 2041-8396</identifier><identifier>EISSN: 2041-840X</identifier><identifier>DOI: 10.1002/wene.102</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Activated carbon ; Aerogels ; Capacitance ; Capacitors ; Carbides ; Carbon ; Carbon nanotubes ; Conflicts of interest ; Curvature ; Distributed generation ; Electric double layer ; Electric power distribution ; Electric vehicles ; Electrical conductivity ; Electrical resistivity ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Energy ; Energy efficiency ; Energy management ; Energy research ; Energy storage ; Fuel technology ; Functional groups ; Graphene ; Hybrid vehicles ; Hydrogen storage ; Hydrogen-based energy ; Industrial equipment ; Innovations ; Interfacial energy ; Nanostructured materials ; Nanotechnology ; Nanotubes ; Pore size ; Porosity ; Power management ; Power plants ; Ships ; Size distribution ; Surface area ; Uninterruptible power supplies ; Wind power ; Zeolites</subject><ispartof>Wiley interdisciplinary reviews. Energy and environment, 2014-09, Vol.3 (5), p.424-473</ispartof><rights>2014 John Wiley &amp; Sons, Ltd</rights><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</citedby><cites>FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwene.102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwene.102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gu, Wentian</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><title>Wiley interdisciplinary reviews. Energy and environment</title><addtitle>WIREs Energy Environ</addtitle><description>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102 This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Infrastructure &gt; Science and Materials Energy and Development &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</description><subject>Activated carbon</subject><subject>Aerogels</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conflicts of interest</subject><subject>Curvature</subject><subject>Distributed generation</subject><subject>Electric double layer</subject><subject>Electric power distribution</subject><subject>Electric vehicles</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Energy research</subject><subject>Energy storage</subject><subject>Fuel technology</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Hybrid vehicles</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>Industrial equipment</subject><subject>Innovations</subject><subject>Interfacial energy</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Power management</subject><subject>Power plants</subject><subject>Ships</subject><subject>Size distribution</subject><subject>Surface area</subject><subject>Uninterruptible power supplies</subject><subject>Wind power</subject><subject>Zeolites</subject><issn>2041-8396</issn><issn>2041-840X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEElWpxE-IxIUDAX8kTsINrbZbpFJEVdHeLMceb906cbCdXcpP54TD0uVL4MuMZh7PO2NPlj3F6CVGiLzawgDJIw-yA4JKXDQlunp479OWPc6OQrhB6TSYlSU7yL6ew8bANnc6H8TgQvSTjJMHlUvhOzfkvYjgjbAh187nYEFG7-Q19EYKm6BRSBNTRoyjTaFo3BBe50JtxBDFGkIuBpVb05u4y81KQkazSXXvRV58t0ZBoZLW5pf4F3DWRCgi9KP960ZqT4B3a7BhH5iniFMHKeKGJFhYcwv7W3Mzay_G6_RQT7JHOs0FRz_sYXZxvLxYnBSn71dvF29OC1mRhhSEMapRqXVJlZQdtJRQqkBTooGotm0VbrWsKOow0apuWF12SmJCO8ZEQg-z57uyo3efJgiR9yZIsFYM4KbAcVPXDUaUVAl99gd64yY_pOY4Sd_bsqZt2f8oXKOaVm3V1D9lpXcheNB89KYX_o5jxOdl4fOyJI8ktNihW2Ph7p8cv1yeLX_jTYjwec8Lf8tZTeuKX56t-NVi9eHk_B3lH-k3VajWGw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Gu, Wentian</creator><creator>Yushin, Gleb</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201409</creationdate><title>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</title><author>Gu, Wentian ; Yushin, Gleb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5282-2663f04ff43dccbe93233def32fe2d999d19fc530b12fd78674bdc123b66a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activated carbon</topic><topic>Aerogels</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conflicts of interest</topic><topic>Curvature</topic><topic>Distributed generation</topic><topic>Electric double layer</topic><topic>Electric power distribution</topic><topic>Electric vehicles</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Energy research</topic><topic>Energy storage</topic><topic>Fuel technology</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Hybrid vehicles</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>Industrial equipment</topic><topic>Innovations</topic><topic>Interfacial energy</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Power management</topic><topic>Power plants</topic><topic>Ships</topic><topic>Size distribution</topic><topic>Surface area</topic><topic>Uninterruptible power supplies</topic><topic>Wind power</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Wentian</creatorcontrib><creatorcontrib>Yushin, Gleb</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Wentian</au><au>Yushin, Gleb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene</atitle><jtitle>Wiley interdisciplinary reviews. Energy and environment</jtitle><addtitle>WIREs Energy Environ</addtitle><date>2014-09</date><risdate>2014</risdate><volume>3</volume><issue>5</issue><spage>424</spage><epage>473</epage><pages>424-473</pages><issn>2041-8396</issn><eissn>2041-840X</eissn><abstract>Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacitor electrodes. This article provides an overview of the electrochemical studies on activated carbon, carbide derived carbon, zeolite‐templated carbon, carbon aerogel, carbon nanotube, onion‐like carbon, and graphene. We discuss the key performance advantages and limitations of various nanostructured carbon materials and provide an overview of the current understanding of the structure–property relationships related to the transport and adsorption of electrolyte ions on their surfaces, specific and volumetric capacitance, self‐discharge, cycle life, electrolyte stability, and others. We discuss the impact of microstructural defects, pore size distribution, pore tortuosity, chemistry and functional groups on the carbon surface, nanoscale curvature, and carbon‐electrolyte interfacial energy. Finally, we review state‐of‐the art commercial large scale applications of supercapacitors, including their use in smart grids and distributed energy storage, hybrid electric and electric vehicles, energy efficient industrial equipment, ships, wind power stations, uninterruptible power supplies, power backup, and consumer devices. WIREs Energy Environ 2014, 3:424–473. doi: 10.1002/wene.102 This article is categorized under: Fuel Cells and Hydrogen &gt; Science and Materials Energy Infrastructure &gt; Science and Materials Energy and Development &gt; Science and Materials Energy Research &amp; Innovation &gt; Science and Materials</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wene.102</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-8396
ispartof Wiley interdisciplinary reviews. Energy and environment, 2014-09, Vol.3 (5), p.424-473
issn 2041-8396
2041-840X
language eng
recordid cdi_proquest_miscellaneous_1877810325
source Wiley Online Library Journals Frontfile Complete
subjects Activated carbon
Aerogels
Capacitance
Capacitors
Carbides
Carbon
Carbon nanotubes
Conflicts of interest
Curvature
Distributed generation
Electric double layer
Electric power distribution
Electric vehicles
Electrical conductivity
Electrical resistivity
Electrochemistry
Electrolytes
Electrolytic cells
Energy
Energy efficiency
Energy management
Energy research
Energy storage
Fuel technology
Functional groups
Graphene
Hybrid vehicles
Hydrogen storage
Hydrogen-based energy
Industrial equipment
Innovations
Interfacial energy
Nanostructured materials
Nanotechnology
Nanotubes
Pore size
Porosity
Power management
Power plants
Ships
Size distribution
Surface area
Uninterruptible power supplies
Wind power
Zeolites
title Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20nanostructured%20carbon%20materials%20for%20electrochemical%20capacitor%20applications:%20advantages%20and%20limitations%20of%20activated%20carbon,%20carbide-derived%20carbon,%20zeolite-templated%20carbon,%20carbon%20aerogels,%20carbon%20nanotubes,%20onion-like%20carbon,%20and%20graphene&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Energy%20and%20environment&rft.au=Gu,%20Wentian&rft.date=2014-09&rft.volume=3&rft.issue=5&rft.spage=424&rft.epage=473&rft.pages=424-473&rft.issn=2041-8396&rft.eissn=2041-840X&rft_id=info:doi/10.1002/wene.102&rft_dat=%3Cproquest_cross%3E3788656041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707359587&rft_id=info:pmid/&rfr_iscdi=true