Bayesian Analysis of Overdispersed Chromosome Aberration Data with the Negative Binomial Model
The usual assumption of a Poisson model for the number of chromosome aberrations in controlled calibration experiments implies variance equal to the mean. However, it is known that chromosome aberration data from experiments involving high linear energy transfer radiations can be overdispersed, i.e....
Gespeichert in:
Veröffentlicht in: | Radiation protection dosimetry 2002-01, Vol.102 (2), p.115-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The usual assumption of a Poisson model for the number of chromosome aberrations in controlled calibration experiments implies variance equal to the mean. However, it is known that chromosome aberration data from experiments involving high linear energy transfer radiations can be overdispersed, i.e. the variance is greater than the mean. Present methods for dealing with overdispersed chromosome data rely on frequentist statistical techniques. In this paper, the problem of overdispersion is considered from a Bayesian standpoint. The Bayes Factor is used to compare Poisson and negative binomial models for two previously published calibration data sets describing the induction of dicentric chromosome aberrations by high doses of neutrons. Posterior densities for the model parameters, which characterise dose response and overdispersion are calculated and graphed. Calibrative densities are derived for unknown neutron doses from hypothetical radiation accident data to determine the impact of different model assumptions on dose estimates. The main conclusion is that an initial assumption of a negative binomial model is the conservative approach to chromosome dosimetry for high LET radiations. |
---|---|
ISSN: | 0144-8420 1742-3406 |
DOI: | 10.1093/oxfordjournals.rpd.a006079 |