Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells

A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2017-05, Vol.12 (10), p.1075-1086
Hauptverfasser: Brotsman, Victor A., Ioutsi, Vitaliy A., Rybalchenko, Alexey V., Markov, Vitaliy Yu, Belov, Nikita M., Lukonina, Natalia S., Troyanov, Sergey I., Ioffe, Ilya N., Trukhanov, Vasiliy A., Galimova, Galina K., Mannanov, Artur A., Zubov, Dmitry N., Kemnitz, Erhard, Sidorov, Lev N., Magdesieva, Tatiana V., Paraschuk, Dmitry Yu, Goryunkov, Alexey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 10
container_start_page 1075
container_title Chemistry, an Asian journal
container_volume 12
creator Brotsman, Victor A.
Ioutsi, Vitaliy A.
Rybalchenko, Alexey V.
Markov, Vitaliy Yu
Belov, Nikita M.
Lukonina, Natalia S.
Troyanov, Sergey I.
Ioffe, Ilya N.
Trukhanov, Vasiliy A.
Galimova, Galina K.
Mannanov, Artur A.
Zubov, Dmitry N.
Kemnitz, Erhard
Sidorov, Lev N.
Magdesieva, Tatiana V.
Paraschuk, Dmitry Yu
Goryunkov, Alexey A.
description A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=n‐decyl, n‐octadecyl, benzyl, and n‐butyl; compounds 1 a–d, respectively), as demonstrated by NMR spectroscopy and X‐ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one‐electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to ion of an electron from the nitrogen lone‐electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a–d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron‐transfer reorganization energy relative to pristine C60. Neat thin films of the n‐decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10−3 cm2 V−1 s−1, which was comparable to phenyl‐C61‐butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as‐cast poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/1 devices relative to the as‐cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge‐transport properties — both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double‐caged molecules. Test P3HT/1 OSCs demonstrated power‐conversion efficiencies up to 2.6 % (1 a). Surprisingly low optimal content of double‐caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity. Acting cagey: Highly soluble double‐caged fullerene derivatives 1 were prepared and characterized (see figure). Test organic solar cells involving 1 demonstrated a twofold increase in power conversion efficiency relative to that with phenyl‐C61‐butyric acid methyl ester (PCBM).
doi_str_mv 10.1002/asia.201700194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1876500630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1876500630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-175c8f6b4727947034af4adac9ed24f302c27d6d7bae68fb8540897c4a2af21c3</originalsourceid><addsrcrecordid>eNqFkc1qGzEURkVpaNK02y6LoJtu7FxpZP105zpxGgh04RQKpQiNRhMryDOONErwrpAXyDPmSSrj1IVuurp3cb7DvXwIvSMwJgD0xCRvxhSIACCKvUBHRHIyYoJ8f7nfqTxEr1O6AZhQUPIVOqSSSlJV9Ag9XPnr5RA2-HOfuwaf9rkO7unX48xcuwb_4PBznkNw0XUOn7ro78zg71zC935Y4rNuaTpbuEUfcu2DHzaf8GKI2Q45moDnzpSl0Kaop-t18LbE-w77bhsxEc9cCOkNOmhNSO7t8zxG3-ZnV7Mvo8uv5xez6eXIMgJsRMTEypbX5SGhmICKmZaZxljlGsraCqilouGNqI3jsq3lhIFUwjJDTUuJrY7Rx513Hfvb7NKgVz7ZcoHpXJ-TJlLwCQCvoKAf_kFv-hy7cp0mCggDzpUq1HhH2dinFF2r19GvTNxoAnpbj97Wo_f1lMD7Z22uV67Z43_6KIDaAfc-uM1_dHq6uJj-lf8GmE-dxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901406699</pqid></control><display><type>article</type><title>Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brotsman, Victor A. ; Ioutsi, Vitaliy A. ; Rybalchenko, Alexey V. ; Markov, Vitaliy Yu ; Belov, Nikita M. ; Lukonina, Natalia S. ; Troyanov, Sergey I. ; Ioffe, Ilya N. ; Trukhanov, Vasiliy A. ; Galimova, Galina K. ; Mannanov, Artur A. ; Zubov, Dmitry N. ; Kemnitz, Erhard ; Sidorov, Lev N. ; Magdesieva, Tatiana V. ; Paraschuk, Dmitry Yu ; Goryunkov, Alexey A.</creator><creatorcontrib>Brotsman, Victor A. ; Ioutsi, Vitaliy A. ; Rybalchenko, Alexey V. ; Markov, Vitaliy Yu ; Belov, Nikita M. ; Lukonina, Natalia S. ; Troyanov, Sergey I. ; Ioffe, Ilya N. ; Trukhanov, Vasiliy A. ; Galimova, Galina K. ; Mannanov, Artur A. ; Zubov, Dmitry N. ; Kemnitz, Erhard ; Sidorov, Lev N. ; Magdesieva, Tatiana V. ; Paraschuk, Dmitry Yu ; Goryunkov, Alexey A.</creatorcontrib><description>A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=n‐decyl, n‐octadecyl, benzyl, and n‐butyl; compounds 1 a–d, respectively), as demonstrated by NMR spectroscopy and X‐ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one‐electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to ion of an electron from the nitrogen lone‐electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a–d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron‐transfer reorganization energy relative to pristine C60. Neat thin films of the n‐decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10−3 cm2 V−1 s−1, which was comparable to phenyl‐C61‐butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as‐cast poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/1 devices relative to the as‐cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge‐transport properties — both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double‐caged molecules. Test P3HT/1 OSCs demonstrated power‐conversion efficiencies up to 2.6 % (1 a). Surprisingly low optimal content of double‐caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity. Acting cagey: Highly soluble double‐caged fullerene derivatives 1 were prepared and characterized (see figure). Test organic solar cells involving 1 demonstrated a twofold increase in power conversion efficiency relative to that with phenyl‐C61‐butyric acid methyl ester (PCBM).</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.201700194</identifier><identifier>PMID: 28281332</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Buckminsterfullerene ; Butyric acid ; cage compounds ; Cages ; Carrier transport ; Charge transport ; Chemistry ; cyclic voltammetry ; Cycloaddition ; Degree of crystallinity ; Derivatives ; Electron mobility ; Electrons ; Energy conversion efficiency ; Fullerenes ; Lithium ; Molecular orbitals ; NMR spectroscopy ; Oxidation ; photochemistry ; Photovoltaic cells ; Solar cells ; Solubility ; Thin films ; Transport properties ; Ultrasonic testing ; X-ray diffraction</subject><ispartof>Chemistry, an Asian journal, 2017-05, Vol.12 (10), p.1075-1086</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-175c8f6b4727947034af4adac9ed24f302c27d6d7bae68fb8540897c4a2af21c3</citedby><cites>FETCH-LOGICAL-c4104-175c8f6b4727947034af4adac9ed24f302c27d6d7bae68fb8540897c4a2af21c3</cites><orcidid>0000-0002-5300-3905 ; 0000-0003-4460-5370 ; 0000-0003-4452-4087 ; 0000-0002-9156-0657 ; 0000-0003-4017-8930 ; 0000-0003-1663-0341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasia.201700194$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasia.201700194$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28281332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brotsman, Victor A.</creatorcontrib><creatorcontrib>Ioutsi, Vitaliy A.</creatorcontrib><creatorcontrib>Rybalchenko, Alexey V.</creatorcontrib><creatorcontrib>Markov, Vitaliy Yu</creatorcontrib><creatorcontrib>Belov, Nikita M.</creatorcontrib><creatorcontrib>Lukonina, Natalia S.</creatorcontrib><creatorcontrib>Troyanov, Sergey I.</creatorcontrib><creatorcontrib>Ioffe, Ilya N.</creatorcontrib><creatorcontrib>Trukhanov, Vasiliy A.</creatorcontrib><creatorcontrib>Galimova, Galina K.</creatorcontrib><creatorcontrib>Mannanov, Artur A.</creatorcontrib><creatorcontrib>Zubov, Dmitry N.</creatorcontrib><creatorcontrib>Kemnitz, Erhard</creatorcontrib><creatorcontrib>Sidorov, Lev N.</creatorcontrib><creatorcontrib>Magdesieva, Tatiana V.</creatorcontrib><creatorcontrib>Paraschuk, Dmitry Yu</creatorcontrib><creatorcontrib>Goryunkov, Alexey A.</creatorcontrib><title>Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=n‐decyl, n‐octadecyl, benzyl, and n‐butyl; compounds 1 a–d, respectively), as demonstrated by NMR spectroscopy and X‐ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one‐electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to ion of an electron from the nitrogen lone‐electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a–d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron‐transfer reorganization energy relative to pristine C60. Neat thin films of the n‐decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10−3 cm2 V−1 s−1, which was comparable to phenyl‐C61‐butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as‐cast poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/1 devices relative to the as‐cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge‐transport properties — both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double‐caged molecules. Test P3HT/1 OSCs demonstrated power‐conversion efficiencies up to 2.6 % (1 a). Surprisingly low optimal content of double‐caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity. Acting cagey: Highly soluble double‐caged fullerene derivatives 1 were prepared and characterized (see figure). Test organic solar cells involving 1 demonstrated a twofold increase in power conversion efficiency relative to that with phenyl‐C61‐butyric acid methyl ester (PCBM).</description><subject>Buckminsterfullerene</subject><subject>Butyric acid</subject><subject>cage compounds</subject><subject>Cages</subject><subject>Carrier transport</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>cyclic voltammetry</subject><subject>Cycloaddition</subject><subject>Degree of crystallinity</subject><subject>Derivatives</subject><subject>Electron mobility</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Lithium</subject><subject>Molecular orbitals</subject><subject>NMR spectroscopy</subject><subject>Oxidation</subject><subject>photochemistry</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solubility</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>Ultrasonic testing</subject><subject>X-ray diffraction</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEURkVpaNK02y6LoJtu7FxpZP105zpxGgh04RQKpQiNRhMryDOONErwrpAXyDPmSSrj1IVuurp3cb7DvXwIvSMwJgD0xCRvxhSIACCKvUBHRHIyYoJ8f7nfqTxEr1O6AZhQUPIVOqSSSlJV9Ag9XPnr5RA2-HOfuwaf9rkO7unX48xcuwb_4PBznkNw0XUOn7ro78zg71zC935Y4rNuaTpbuEUfcu2DHzaf8GKI2Q45moDnzpSl0Kaop-t18LbE-w77bhsxEc9cCOkNOmhNSO7t8zxG3-ZnV7Mvo8uv5xez6eXIMgJsRMTEypbX5SGhmICKmZaZxljlGsraCqilouGNqI3jsq3lhIFUwjJDTUuJrY7Rx513Hfvb7NKgVz7ZcoHpXJ-TJlLwCQCvoKAf_kFv-hy7cp0mCggDzpUq1HhH2dinFF2r19GvTNxoAnpbj97Wo_f1lMD7Z22uV67Z43_6KIDaAfc-uM1_dHq6uJj-lf8GmE-dxA</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Brotsman, Victor A.</creator><creator>Ioutsi, Vitaliy A.</creator><creator>Rybalchenko, Alexey V.</creator><creator>Markov, Vitaliy Yu</creator><creator>Belov, Nikita M.</creator><creator>Lukonina, Natalia S.</creator><creator>Troyanov, Sergey I.</creator><creator>Ioffe, Ilya N.</creator><creator>Trukhanov, Vasiliy A.</creator><creator>Galimova, Galina K.</creator><creator>Mannanov, Artur A.</creator><creator>Zubov, Dmitry N.</creator><creator>Kemnitz, Erhard</creator><creator>Sidorov, Lev N.</creator><creator>Magdesieva, Tatiana V.</creator><creator>Paraschuk, Dmitry Yu</creator><creator>Goryunkov, Alexey A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5300-3905</orcidid><orcidid>https://orcid.org/0000-0003-4460-5370</orcidid><orcidid>https://orcid.org/0000-0003-4452-4087</orcidid><orcidid>https://orcid.org/0000-0002-9156-0657</orcidid><orcidid>https://orcid.org/0000-0003-4017-8930</orcidid><orcidid>https://orcid.org/0000-0003-1663-0341</orcidid></search><sort><creationdate>20170518</creationdate><title>Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells</title><author>Brotsman, Victor A. ; Ioutsi, Vitaliy A. ; Rybalchenko, Alexey V. ; Markov, Vitaliy Yu ; Belov, Nikita M. ; Lukonina, Natalia S. ; Troyanov, Sergey I. ; Ioffe, Ilya N. ; Trukhanov, Vasiliy A. ; Galimova, Galina K. ; Mannanov, Artur A. ; Zubov, Dmitry N. ; Kemnitz, Erhard ; Sidorov, Lev N. ; Magdesieva, Tatiana V. ; Paraschuk, Dmitry Yu ; Goryunkov, Alexey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-175c8f6b4727947034af4adac9ed24f302c27d6d7bae68fb8540897c4a2af21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckminsterfullerene</topic><topic>Butyric acid</topic><topic>cage compounds</topic><topic>Cages</topic><topic>Carrier transport</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>cyclic voltammetry</topic><topic>Cycloaddition</topic><topic>Degree of crystallinity</topic><topic>Derivatives</topic><topic>Electron mobility</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Lithium</topic><topic>Molecular orbitals</topic><topic>NMR spectroscopy</topic><topic>Oxidation</topic><topic>photochemistry</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solubility</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>Ultrasonic testing</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brotsman, Victor A.</creatorcontrib><creatorcontrib>Ioutsi, Vitaliy A.</creatorcontrib><creatorcontrib>Rybalchenko, Alexey V.</creatorcontrib><creatorcontrib>Markov, Vitaliy Yu</creatorcontrib><creatorcontrib>Belov, Nikita M.</creatorcontrib><creatorcontrib>Lukonina, Natalia S.</creatorcontrib><creatorcontrib>Troyanov, Sergey I.</creatorcontrib><creatorcontrib>Ioffe, Ilya N.</creatorcontrib><creatorcontrib>Trukhanov, Vasiliy A.</creatorcontrib><creatorcontrib>Galimova, Galina K.</creatorcontrib><creatorcontrib>Mannanov, Artur A.</creatorcontrib><creatorcontrib>Zubov, Dmitry N.</creatorcontrib><creatorcontrib>Kemnitz, Erhard</creatorcontrib><creatorcontrib>Sidorov, Lev N.</creatorcontrib><creatorcontrib>Magdesieva, Tatiana V.</creatorcontrib><creatorcontrib>Paraschuk, Dmitry Yu</creatorcontrib><creatorcontrib>Goryunkov, Alexey A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brotsman, Victor A.</au><au>Ioutsi, Vitaliy A.</au><au>Rybalchenko, Alexey V.</au><au>Markov, Vitaliy Yu</au><au>Belov, Nikita M.</au><au>Lukonina, Natalia S.</au><au>Troyanov, Sergey I.</au><au>Ioffe, Ilya N.</au><au>Trukhanov, Vasiliy A.</au><au>Galimova, Galina K.</au><au>Mannanov, Artur A.</au><au>Zubov, Dmitry N.</au><au>Kemnitz, Erhard</au><au>Sidorov, Lev N.</au><au>Magdesieva, Tatiana V.</au><au>Paraschuk, Dmitry Yu</au><au>Goryunkov, Alexey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>1075</spage><epage>1086</epage><pages>1075-1086</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>A series of novel highly soluble double‐caged [60]fullerene derivatives were prepared by means of lithium‐salt‐assisted [2+3] cycloaddition. The bispheric molecules feature rigid linking of the fullerene spheres through a four‐membered cycle and a pyrrolizidine bridge with an ester function CO2R (R=n‐decyl, n‐octadecyl, benzyl, and n‐butyl; compounds 1 a–d, respectively), as demonstrated by NMR spectroscopy and X‐ray diffraction. Cyclic voltammetry studies revealed three closely overlapping pairs of reversible peaks owing to consecutive one‐electron reductions of fullerene cages, as well as an irreversible oxidation peak attributed to ion of an electron from the nitrogen lone‐electron pair. Owing to charge delocalization over both carbon cages, compounds 1 a–d are characterized by upshifted energies of frontier molecular orbitals, a narrowed bandgap, and reduced electron‐transfer reorganization energy relative to pristine C60. Neat thin films of the n‐decyl compound 1 a demonstrated electron mobility of (1.3±0.4)×10−3 cm2 V−1 s−1, which was comparable to phenyl‐C61‐butyric acid methyl ester (PCBM) and thus potentially advantageous for organic solar cells (OSC). Application of 1 in OSC allowed a twofold increase in the power conversion efficiencies of as‐cast poly(3‐hexylthiophene‐2,5‐diyl) (P3HT)/1 devices relative to the as‐cast P3HT/PCBM ones. This is attributed to the good solubility of 1 and their enhanced charge‐transport properties — both intramolecular, owing to tightly linked fullerene cages, and intermolecular, owing to the large number of close contacts between the neighboring double‐caged molecules. Test P3HT/1 OSCs demonstrated power‐conversion efficiencies up to 2.6 % (1 a). Surprisingly low optimal content of double‐caged fullerene acceptor 1 in the photoactive layer (≈30 wt %) favored better light harvesting and carrier transport owing to the greater content of P3HT and its higher degree of crystallinity. Acting cagey: Highly soluble double‐caged fullerene derivatives 1 were prepared and characterized (see figure). Test organic solar cells involving 1 demonstrated a twofold increase in power conversion efficiency relative to that with phenyl‐C61‐butyric acid methyl ester (PCBM).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28281332</pmid><doi>10.1002/asia.201700194</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5300-3905</orcidid><orcidid>https://orcid.org/0000-0003-4460-5370</orcidid><orcidid>https://orcid.org/0000-0003-4452-4087</orcidid><orcidid>https://orcid.org/0000-0002-9156-0657</orcidid><orcidid>https://orcid.org/0000-0003-4017-8930</orcidid><orcidid>https://orcid.org/0000-0003-1663-0341</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2017-05, Vol.12 (10), p.1075-1086
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_miscellaneous_1876500630
source Wiley Online Library Journals Frontfile Complete
subjects Buckminsterfullerene
Butyric acid
cage compounds
Cages
Carrier transport
Charge transport
Chemistry
cyclic voltammetry
Cycloaddition
Degree of crystallinity
Derivatives
Electron mobility
Electrons
Energy conversion efficiency
Fullerenes
Lithium
Molecular orbitals
NMR spectroscopy
Oxidation
photochemistry
Photovoltaic cells
Solar cells
Solubility
Thin films
Transport properties
Ultrasonic testing
X-ray diffraction
title Tightly Bound Double‐Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightly%20Bound%20Double%E2%80%90Caged%20%5B60%5DFullerene%20Derivatives%20with%20Enhanced%20Solubility:%20Structural%20Features%20and%20Application%20in%20Solar%20Cells&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Brotsman,%20Victor%20A.&rft.date=2017-05-18&rft.volume=12&rft.issue=10&rft.spage=1075&rft.epage=1086&rft.pages=1075-1086&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.201700194&rft_dat=%3Cproquest_cross%3E1876500630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901406699&rft_id=info:pmid/28281332&rfr_iscdi=true