Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods

Background The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Echocardiography 2017-05, Vol.30 (5), p.511-521
Hauptverfasser: Zürcher, Fabian, MD, Brugger, Nicolas, MD, Jahren, Silje Ekroll, MSc, de Marchi, Stefano Fausto, MD, Seiler, Christian, MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 5
container_start_page 511
container_title Journal of the American Society of Echocardiography
container_volume 30
creator Zürcher, Fabian, MD
Brugger, Nicolas, MD
Jahren, Silje Ekroll, MSc
de Marchi, Stefano Fausto, MD
Seiler, Christian, MD
description Background The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Doppler data sets. Methods Several regurgitant volumes (Rvols) were simulated using a pulsatile pump connected to a phantom equipped with single and double regurgitant orifices of different sizes and interspaces. A flowmeter served as the reference method. Transthoracic (TTE) and transoesophageal echocardiography (TEE) were used to acquire the 3D data sets. Offline, Rvols were calculated by 2D PISA methods based on hemispheric and hemicylindric assumptions and by 3D integrated PISA. Results A fusion of the PISA was observed in the setting of narrow-spaced regurgitant orifices; compared with flowmeter, Rvol was underestimated using the single hemispheric PISA model (TTE: Bland-Altman bias ± limit of agreement, −17.5 ± 8.9 mL; TEE: −15.9 ± 7.3 mL) and overestimated using the double hemispheric PISA model (TTE: +7.1 ± 14.6 mL; TEE: +10.4 ± 11.9 mL). The combined approach (hemisphere for single orifice, hemicylinder with two bases for nonfused PISAs, and hemicylinder with one base for fused PISAs) was more precise (TTE: −3.4 ± 6.3 mL; TEE: −1.9 ± 5.6 mL). Three-dimensional integrated PISA was the most accurate method to quantify Rvol (TTE: −2.1 ± 6.5 mL; TEE −3.2 ± 4.8 mL). Conclusions In the setting of double MR orifices, the 2D combined approach and integrated 3D PISA appear to be superior as compared with the conventional hemispheric method, thus providing tools for the challenging quantification of MR with multiple jets.
doi_str_mv 10.1016/j.echo.2016.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1876499441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S089473171630760X</els_id><sourcerecordid>1876499441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-9f819ae77c632f344b7a4330a9f693113ed64163166d3961a878e6cc34bd91633</originalsourceid><addsrcrecordid>eNp9ks2O0zAUhSMEYsrAC7BAXrJJsGOPHSOEVJW_oqn4aRmxs1znpnVJ7WI7A32beRaeDEcdWLBg5Sv7O0c6PrcoHhNcEUz4s10FZuurOs8VqStM6jvFhGApSi7kxd1ighvJSkGJOCsexLjDGF80GN8vzuqmFkwQNiluPg3aJdtZo5P1DvkOLYY-2UMPaGFT0D36DJshbGzKHHoPKT5HU4fm7tfNVX736Er3tj2Jl2loj2jm9wcdrNug1Q9fIu1atNoGgPKV3YOLGcymH4P_afd5mEd_Db03Nh3RcgidNoCmATRaQNr6Nj4s7nW6j_Do9jwvvrx5vZq9Ky8_vJ3PppelYYSkUnYNkRqEMJzWHWVsLTSjFGvZcUkJodByRjglnLdUcqIb0QA3hrJ1K_M9PS-ennwPwX8fICa1t9FA32sHfoiKNIIzKRkjGa1PqAk-xgCdOoScJRwVwWpsRu3U2Iwam1GkVrmZLHpy6z-s99D-lfypIgMvTgDklNcWgorGgjPQ2gAmqdbb__u__Edueutyrf03OELc-SHkf885VMwCtRx3Y1yNnB0Ljr_S3xsqtms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876499441</pqid></control><display><type>article</type><title>Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zürcher, Fabian, MD ; Brugger, Nicolas, MD ; Jahren, Silje Ekroll, MSc ; de Marchi, Stefano Fausto, MD ; Seiler, Christian, MD</creator><creatorcontrib>Zürcher, Fabian, MD ; Brugger, Nicolas, MD ; Jahren, Silje Ekroll, MSc ; de Marchi, Stefano Fausto, MD ; Seiler, Christian, MD</creatorcontrib><description>Background The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Doppler data sets. Methods Several regurgitant volumes (Rvols) were simulated using a pulsatile pump connected to a phantom equipped with single and double regurgitant orifices of different sizes and interspaces. A flowmeter served as the reference method. Transthoracic (TTE) and transoesophageal echocardiography (TEE) were used to acquire the 3D data sets. Offline, Rvols were calculated by 2D PISA methods based on hemispheric and hemicylindric assumptions and by 3D integrated PISA. Results A fusion of the PISA was observed in the setting of narrow-spaced regurgitant orifices; compared with flowmeter, Rvol was underestimated using the single hemispheric PISA model (TTE: Bland-Altman bias ± limit of agreement, −17.5 ± 8.9 mL; TEE: −15.9 ± 7.3 mL) and overestimated using the double hemispheric PISA model (TTE: +7.1 ± 14.6 mL; TEE: +10.4 ± 11.9 mL). The combined approach (hemisphere for single orifice, hemicylinder with two bases for nonfused PISAs, and hemicylinder with one base for fused PISAs) was more precise (TTE: −3.4 ± 6.3 mL; TEE: −1.9 ± 5.6 mL). Three-dimensional integrated PISA was the most accurate method to quantify Rvol (TTE: −2.1 ± 6.5 mL; TEE −3.2 ± 4.8 mL). Conclusions In the setting of double MR orifices, the 2D combined approach and integrated 3D PISA appear to be superior as compared with the conventional hemispheric method, thus providing tools for the challenging quantification of MR with multiple jets.</description><identifier>ISSN: 0894-7317</identifier><identifier>EISSN: 1097-6795</identifier><identifier>DOI: 10.1016/j.echo.2016.12.012</identifier><identifier>PMID: 28274714</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2D color Doppler echocardiography ; 3D color Doppler echocardiography ; Blood Flow Velocity ; Cardiovascular ; Echocardiography, Doppler, Color - instrumentation ; Echocardiography, Doppler, Color - methods ; Echocardiography, Three-Dimensional - methods ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Mitral regurgitation quantification ; Mitral Valve Insufficiency - diagnostic imaging ; Mitral Valve Insufficiency - physiopathology ; Multiple regurgitant orifices ; Phantoms, Imaging ; Proximal isovelocity surface area ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Journal of the American Society of Echocardiography, 2017-05, Vol.30 (5), p.511-521</ispartof><rights>American Society of Echocardiography</rights><rights>2017 American Society of Echocardiography</rights><rights>Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-9f819ae77c632f344b7a4330a9f693113ed64163166d3961a878e6cc34bd91633</citedby><cites>FETCH-LOGICAL-c411t-9f819ae77c632f344b7a4330a9f693113ed64163166d3961a878e6cc34bd91633</cites><orcidid>0000-0001-7739-2549 ; 0000-0003-3931-5141 ; 0000-0003-3149-2944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.echo.2016.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28274714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zürcher, Fabian, MD</creatorcontrib><creatorcontrib>Brugger, Nicolas, MD</creatorcontrib><creatorcontrib>Jahren, Silje Ekroll, MSc</creatorcontrib><creatorcontrib>de Marchi, Stefano Fausto, MD</creatorcontrib><creatorcontrib>Seiler, Christian, MD</creatorcontrib><title>Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods</title><title>Journal of the American Society of Echocardiography</title><addtitle>J Am Soc Echocardiogr</addtitle><description>Background The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Doppler data sets. Methods Several regurgitant volumes (Rvols) were simulated using a pulsatile pump connected to a phantom equipped with single and double regurgitant orifices of different sizes and interspaces. A flowmeter served as the reference method. Transthoracic (TTE) and transoesophageal echocardiography (TEE) were used to acquire the 3D data sets. Offline, Rvols were calculated by 2D PISA methods based on hemispheric and hemicylindric assumptions and by 3D integrated PISA. Results A fusion of the PISA was observed in the setting of narrow-spaced regurgitant orifices; compared with flowmeter, Rvol was underestimated using the single hemispheric PISA model (TTE: Bland-Altman bias ± limit of agreement, −17.5 ± 8.9 mL; TEE: −15.9 ± 7.3 mL) and overestimated using the double hemispheric PISA model (TTE: +7.1 ± 14.6 mL; TEE: +10.4 ± 11.9 mL). The combined approach (hemisphere for single orifice, hemicylinder with two bases for nonfused PISAs, and hemicylinder with one base for fused PISAs) was more precise (TTE: −3.4 ± 6.3 mL; TEE: −1.9 ± 5.6 mL). Three-dimensional integrated PISA was the most accurate method to quantify Rvol (TTE: −2.1 ± 6.5 mL; TEE −3.2 ± 4.8 mL). Conclusions In the setting of double MR orifices, the 2D combined approach and integrated 3D PISA appear to be superior as compared with the conventional hemispheric method, thus providing tools for the challenging quantification of MR with multiple jets.</description><subject>2D color Doppler echocardiography</subject><subject>3D color Doppler echocardiography</subject><subject>Blood Flow Velocity</subject><subject>Cardiovascular</subject><subject>Echocardiography, Doppler, Color - instrumentation</subject><subject>Echocardiography, Doppler, Color - methods</subject><subject>Echocardiography, Three-Dimensional - methods</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Mitral regurgitation quantification</subject><subject>Mitral Valve Insufficiency - diagnostic imaging</subject><subject>Mitral Valve Insufficiency - physiopathology</subject><subject>Multiple regurgitant orifices</subject><subject>Phantoms, Imaging</subject><subject>Proximal isovelocity surface area</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0894-7317</issn><issn>1097-6795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks2O0zAUhSMEYsrAC7BAXrJJsGOPHSOEVJW_oqn4aRmxs1znpnVJ7WI7A32beRaeDEcdWLBg5Sv7O0c6PrcoHhNcEUz4s10FZuurOs8VqStM6jvFhGApSi7kxd1ighvJSkGJOCsexLjDGF80GN8vzuqmFkwQNiluPg3aJdtZo5P1DvkOLYY-2UMPaGFT0D36DJshbGzKHHoPKT5HU4fm7tfNVX736Er3tj2Jl2loj2jm9wcdrNug1Q9fIu1atNoGgPKV3YOLGcymH4P_afd5mEd_Db03Nh3RcgidNoCmATRaQNr6Nj4s7nW6j_Do9jwvvrx5vZq9Ky8_vJ3PppelYYSkUnYNkRqEMJzWHWVsLTSjFGvZcUkJodByRjglnLdUcqIb0QA3hrJ1K_M9PS-ennwPwX8fICa1t9FA32sHfoiKNIIzKRkjGa1PqAk-xgCdOoScJRwVwWpsRu3U2Iwam1GkVrmZLHpy6z-s99D-lfypIgMvTgDklNcWgorGgjPQ2gAmqdbb__u__Edueutyrf03OELc-SHkf885VMwCtRx3Y1yNnB0Ljr_S3xsqtms</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zürcher, Fabian, MD</creator><creator>Brugger, Nicolas, MD</creator><creator>Jahren, Silje Ekroll, MSc</creator><creator>de Marchi, Stefano Fausto, MD</creator><creator>Seiler, Christian, MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7739-2549</orcidid><orcidid>https://orcid.org/0000-0003-3931-5141</orcidid><orcidid>https://orcid.org/0000-0003-3149-2944</orcidid></search><sort><creationdate>20170501</creationdate><title>Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods</title><author>Zürcher, Fabian, MD ; Brugger, Nicolas, MD ; Jahren, Silje Ekroll, MSc ; de Marchi, Stefano Fausto, MD ; Seiler, Christian, MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-9f819ae77c632f344b7a4330a9f693113ed64163166d3961a878e6cc34bd91633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2D color Doppler echocardiography</topic><topic>3D color Doppler echocardiography</topic><topic>Blood Flow Velocity</topic><topic>Cardiovascular</topic><topic>Echocardiography, Doppler, Color - instrumentation</topic><topic>Echocardiography, Doppler, Color - methods</topic><topic>Echocardiography, Three-Dimensional - methods</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Mitral regurgitation quantification</topic><topic>Mitral Valve Insufficiency - diagnostic imaging</topic><topic>Mitral Valve Insufficiency - physiopathology</topic><topic>Multiple regurgitant orifices</topic><topic>Phantoms, Imaging</topic><topic>Proximal isovelocity surface area</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zürcher, Fabian, MD</creatorcontrib><creatorcontrib>Brugger, Nicolas, MD</creatorcontrib><creatorcontrib>Jahren, Silje Ekroll, MSc</creatorcontrib><creatorcontrib>de Marchi, Stefano Fausto, MD</creatorcontrib><creatorcontrib>Seiler, Christian, MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society of Echocardiography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zürcher, Fabian, MD</au><au>Brugger, Nicolas, MD</au><au>Jahren, Silje Ekroll, MSc</au><au>de Marchi, Stefano Fausto, MD</au><au>Seiler, Christian, MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods</atitle><jtitle>Journal of the American Society of Echocardiography</jtitle><addtitle>J Am Soc Echocardiogr</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>30</volume><issue>5</issue><spage>511</spage><epage>521</epage><pages>511-521</pages><issn>0894-7317</issn><eissn>1097-6795</eissn><abstract>Background The accuracy of the proximal isovelocity surface area (PISA) method for the quantification of mitral regurgitation (MR), in the case of multiple jets, is unknown. The aim of this study was to evaluate different two-dimensional (2D) and three-dimensional (3D) PISA methods using 3D color Doppler data sets. Methods Several regurgitant volumes (Rvols) were simulated using a pulsatile pump connected to a phantom equipped with single and double regurgitant orifices of different sizes and interspaces. A flowmeter served as the reference method. Transthoracic (TTE) and transoesophageal echocardiography (TEE) were used to acquire the 3D data sets. Offline, Rvols were calculated by 2D PISA methods based on hemispheric and hemicylindric assumptions and by 3D integrated PISA. Results A fusion of the PISA was observed in the setting of narrow-spaced regurgitant orifices; compared with flowmeter, Rvol was underestimated using the single hemispheric PISA model (TTE: Bland-Altman bias ± limit of agreement, −17.5 ± 8.9 mL; TEE: −15.9 ± 7.3 mL) and overestimated using the double hemispheric PISA model (TTE: +7.1 ± 14.6 mL; TEE: +10.4 ± 11.9 mL). The combined approach (hemisphere for single orifice, hemicylinder with two bases for nonfused PISAs, and hemicylinder with one base for fused PISAs) was more precise (TTE: −3.4 ± 6.3 mL; TEE: −1.9 ± 5.6 mL). Three-dimensional integrated PISA was the most accurate method to quantify Rvol (TTE: −2.1 ± 6.5 mL; TEE −3.2 ± 4.8 mL). Conclusions In the setting of double MR orifices, the 2D combined approach and integrated 3D PISA appear to be superior as compared with the conventional hemispheric method, thus providing tools for the challenging quantification of MR with multiple jets.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28274714</pmid><doi>10.1016/j.echo.2016.12.012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7739-2549</orcidid><orcidid>https://orcid.org/0000-0003-3931-5141</orcidid><orcidid>https://orcid.org/0000-0003-3149-2944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-7317
ispartof Journal of the American Society of Echocardiography, 2017-05, Vol.30 (5), p.511-521
issn 0894-7317
1097-6795
language eng
recordid cdi_proquest_miscellaneous_1876499441
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 2D color Doppler echocardiography
3D color Doppler echocardiography
Blood Flow Velocity
Cardiovascular
Echocardiography, Doppler, Color - instrumentation
Echocardiography, Doppler, Color - methods
Echocardiography, Three-Dimensional - methods
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Mitral regurgitation quantification
Mitral Valve Insufficiency - diagnostic imaging
Mitral Valve Insufficiency - physiopathology
Multiple regurgitant orifices
Phantoms, Imaging
Proximal isovelocity surface area
Reproducibility of Results
Sensitivity and Specificity
title Quantification of Multiple Mitral Regurgitant Jets: An In Vitro Validation Study Comparing Two- and Three-Dimensional Proximal Isovelocity Surface Area Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20Multiple%20Mitral%20Regurgitant%20Jets:%20An%20In%C2%A0Vitro%20Validation%20Study%20Comparing%20Two-%20and%20Three-Dimensional%20Proximal%20Isovelocity%20Surface%20Area%20Methods&rft.jtitle=Journal%20of%20the%20American%20Society%20of%20Echocardiography&rft.au=Z%C3%BCrcher,%20Fabian,%20MD&rft.date=2017-05-01&rft.volume=30&rft.issue=5&rft.spage=511&rft.epage=521&rft.pages=511-521&rft.issn=0894-7317&rft.eissn=1097-6795&rft_id=info:doi/10.1016/j.echo.2016.12.012&rft_dat=%3Cproquest_cross%3E1876499441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876499441&rft_id=info:pmid/28274714&rft_els_id=1_s2_0_S089473171630760X&rfr_iscdi=true