Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks

More than half of the analyzed calculi from patients from Macedonia are composed of whewellite, weddellite and carbonate apatite (as single components or in binary or ternary mixtures). In order to develop a simple and satisfactorily reliable method for quantitative analysis of urinary calculi, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2003-09, Vol.491 (2), p.211-218
Hauptverfasser: Kuzmanovski, Igor, Trpkovska, Mira, Šoptrajanov, Bojan, Stefov, Viktor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 2
container_start_page 211
container_title Analytica chimica acta
container_volume 491
creator Kuzmanovski, Igor
Trpkovska, Mira
Šoptrajanov, Bojan
Stefov, Viktor
description More than half of the analyzed calculi from patients from Macedonia are composed of whewellite, weddellite and carbonate apatite (as single components or in binary or ternary mixtures). In order to develop a simple and satisfactorily reliable method for quantitative analysis of urinary calculi, the possibility was explored to employ artificial neural networks (ANNs) as a tool for such a purpose. By changing the number of input and hidden neurons, a search was made for the three-layered feed-forward ANN which would give the best performance. The root-mean-square errors (RMSE) for the test samples are: 0.035 for whewellite, 0.064 for weddellite and 0.078 for carbonate apatite. The accuracy of the method was checked using standard-addition method on real samples. The discrepancies between calculated and predicted mass fraction of constituents were in the range acceptable for use of the proposed method in clinical laboratories.
doi_str_mv 10.1016/S0003-2670(03)00787-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1875858040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267003007876</els_id><sourcerecordid>17675945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c9248611820e19012723230775965c0eae333a36c720e822db0b81b3f9dda0ff3</originalsourceid><addsrcrecordid>eNqFkcuOFCEUhonRxLb1EUzYaMZkyjlAVUGvzGQcL8kks1DXhIZTNloFLVB2fI55YemLunNWP4d855L_J-Q5g9cMWH_xCQBEw3sJZyBeAUglm_4BWTAlRdMK3j4ki7_IY_Ik52-15AzaBbl7iwXT5IMpPgYaB1o2SG2ctjH7P1-beTKBzqlS6Re1ZrTz6E8Quj2x2-AOx9EXPKc7dO74pia4iqd1rONrta1Lqs7Zh6_UpOIHb70ZacA5HaTsYvqen5JHgxkzPjvpknx5d_356kNzc_v-49XlTWPbTpTGrniresYUB2QrYFxywQVI2a36zgIaFEIY0VtZAcW5W8NasbUYVs4ZGAaxJGfHudsUf8yYi558tvV0EzDOWVf_OtUpaKGiL_-Pyr6urWctSXcEbYo5Jxz0Nvmp2qYZ6H1a-pCW3kehqx7S0n3te3FaYHI1eEgmWJ__NXfQSSX2898cOazG_PSYdLYeg0XnE9qiXfT3bPoNbSCrYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17675945</pqid></control><display><type>article</type><title>Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Kuzmanovski, Igor ; Trpkovska, Mira ; Šoptrajanov, Bojan ; Stefov, Viktor</creator><creatorcontrib>Kuzmanovski, Igor ; Trpkovska, Mira ; Šoptrajanov, Bojan ; Stefov, Viktor</creatorcontrib><description>More than half of the analyzed calculi from patients from Macedonia are composed of whewellite, weddellite and carbonate apatite (as single components or in binary or ternary mixtures). In order to develop a simple and satisfactorily reliable method for quantitative analysis of urinary calculi, the possibility was explored to employ artificial neural networks (ANNs) as a tool for such a purpose. By changing the number of input and hidden neurons, a search was made for the three-layered feed-forward ANN which would give the best performance. The root-mean-square errors (RMSE) for the test samples are: 0.035 for whewellite, 0.064 for weddellite and 0.078 for carbonate apatite. The accuracy of the method was checked using standard-addition method on real samples. The discrepancies between calculated and predicted mass fraction of constituents were in the range acceptable for use of the proposed method in clinical laboratories.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/S0003-2670(03)00787-6</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Applied sciences ; Artificial intelligence ; Artificial neural network ; Biological and medical sciences ; Carbonate apatite ; Chemistry ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Infrared spectroscopy ; Medical sciences ; Nephrology. Urinary tract diseases ; Spectrometric and optical methods ; Urinary calculi ; Urinary lithiasis ; Weddellite ; Whewellite</subject><ispartof>Analytica chimica acta, 2003-09, Vol.491 (2), p.211-218</ispartof><rights>2003 Elsevier B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c9248611820e19012723230775965c0eae333a36c720e822db0b81b3f9dda0ff3</citedby><cites>FETCH-LOGICAL-c453t-c9248611820e19012723230775965c0eae333a36c720e822db0b81b3f9dda0ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0003-2670(03)00787-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15057835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuzmanovski, Igor</creatorcontrib><creatorcontrib>Trpkovska, Mira</creatorcontrib><creatorcontrib>Šoptrajanov, Bojan</creatorcontrib><creatorcontrib>Stefov, Viktor</creatorcontrib><title>Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks</title><title>Analytica chimica acta</title><description>More than half of the analyzed calculi from patients from Macedonia are composed of whewellite, weddellite and carbonate apatite (as single components or in binary or ternary mixtures). In order to develop a simple and satisfactorily reliable method for quantitative analysis of urinary calculi, the possibility was explored to employ artificial neural networks (ANNs) as a tool for such a purpose. By changing the number of input and hidden neurons, a search was made for the three-layered feed-forward ANN which would give the best performance. The root-mean-square errors (RMSE) for the test samples are: 0.035 for whewellite, 0.064 for weddellite and 0.078 for carbonate apatite. The accuracy of the method was checked using standard-addition method on real samples. The discrepancies between calculated and predicted mass fraction of constituents were in the range acceptable for use of the proposed method in clinical laboratories.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural network</subject><subject>Biological and medical sciences</subject><subject>Carbonate apatite</subject><subject>Chemistry</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Infrared spectroscopy</subject><subject>Medical sciences</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Spectrometric and optical methods</subject><subject>Urinary calculi</subject><subject>Urinary lithiasis</subject><subject>Weddellite</subject><subject>Whewellite</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkcuOFCEUhonRxLb1EUzYaMZkyjlAVUGvzGQcL8kks1DXhIZTNloFLVB2fI55YemLunNWP4d855L_J-Q5g9cMWH_xCQBEw3sJZyBeAUglm_4BWTAlRdMK3j4ki7_IY_Ik52-15AzaBbl7iwXT5IMpPgYaB1o2SG2ctjH7P1-beTKBzqlS6Re1ZrTz6E8Quj2x2-AOx9EXPKc7dO74pia4iqd1rONrta1Lqs7Zh6_UpOIHb70ZacA5HaTsYvqen5JHgxkzPjvpknx5d_356kNzc_v-49XlTWPbTpTGrniresYUB2QrYFxywQVI2a36zgIaFEIY0VtZAcW5W8NasbUYVs4ZGAaxJGfHudsUf8yYi558tvV0EzDOWVf_OtUpaKGiL_-Pyr6urWctSXcEbYo5Jxz0Nvmp2qYZ6H1a-pCW3kehqx7S0n3te3FaYHI1eEgmWJ__NXfQSSX2898cOazG_PSYdLYeg0XnE9qiXfT3bPoNbSCrYQ</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Kuzmanovski, Igor</creator><creator>Trpkovska, Mira</creator><creator>Šoptrajanov, Bojan</creator><creator>Stefov, Viktor</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20030901</creationdate><title>Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks</title><author>Kuzmanovski, Igor ; Trpkovska, Mira ; Šoptrajanov, Bojan ; Stefov, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c9248611820e19012723230775965c0eae333a36c720e822db0b81b3f9dda0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural network</topic><topic>Biological and medical sciences</topic><topic>Carbonate apatite</topic><topic>Chemistry</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Infrared spectroscopy</topic><topic>Medical sciences</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Spectrometric and optical methods</topic><topic>Urinary calculi</topic><topic>Urinary lithiasis</topic><topic>Weddellite</topic><topic>Whewellite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzmanovski, Igor</creatorcontrib><creatorcontrib>Trpkovska, Mira</creatorcontrib><creatorcontrib>Šoptrajanov, Bojan</creatorcontrib><creatorcontrib>Stefov, Viktor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzmanovski, Igor</au><au>Trpkovska, Mira</au><au>Šoptrajanov, Bojan</au><au>Stefov, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks</atitle><jtitle>Analytica chimica acta</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>491</volume><issue>2</issue><spage>211</spage><epage>218</epage><pages>211-218</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>More than half of the analyzed calculi from patients from Macedonia are composed of whewellite, weddellite and carbonate apatite (as single components or in binary or ternary mixtures). In order to develop a simple and satisfactorily reliable method for quantitative analysis of urinary calculi, the possibility was explored to employ artificial neural networks (ANNs) as a tool for such a purpose. By changing the number of input and hidden neurons, a search was made for the three-layered feed-forward ANN which would give the best performance. The root-mean-square errors (RMSE) for the test samples are: 0.035 for whewellite, 0.064 for weddellite and 0.078 for carbonate apatite. The accuracy of the method was checked using standard-addition method on real samples. The discrepancies between calculated and predicted mass fraction of constituents were in the range acceptable for use of the proposed method in clinical laboratories.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0003-2670(03)00787-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2003-09, Vol.491 (2), p.211-218
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_1875858040
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Applied sciences
Artificial intelligence
Artificial neural network
Biological and medical sciences
Carbonate apatite
Chemistry
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Infrared spectroscopy
Medical sciences
Nephrology. Urinary tract diseases
Spectrometric and optical methods
Urinary calculi
Urinary lithiasis
Weddellite
Whewellite
title Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20composition%20of%20human%20urinary%20calculi%20composed%20of%20whewellite,%20weddellite%20and%20carbonate%20apatite%20using%20artificial%20neural%20networks&rft.jtitle=Analytica%20chimica%20acta&rft.au=Kuzmanovski,%20Igor&rft.date=2003-09-01&rft.volume=491&rft.issue=2&rft.spage=211&rft.epage=218&rft.pages=211-218&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/S0003-2670(03)00787-6&rft_dat=%3Cproquest_cross%3E17675945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17675945&rft_id=info:pmid/&rft_els_id=S0003267003007876&rfr_iscdi=true