Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology

A flexible method is needed for constrained ordination on the basis of any distance or dissimilarity measure, which will display a cloud of multivariate points by reference to a specific a priori hypothesis. We suggest the use of principal coordinate analysis (PCO, metric MDS), followed by either a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2003-02, Vol.84 (2), p.511-525
Hauptverfasser: Anderson, Marti J., Willis, Trevor J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 2
container_start_page 511
container_title Ecology (Durham)
container_volume 84
creator Anderson, Marti J.
Willis, Trevor J.
description A flexible method is needed for constrained ordination on the basis of any distance or dissimilarity measure, which will display a cloud of multivariate points by reference to a specific a priori hypothesis. We suggest the use of principal coordinate analysis (PCO, metric MDS), followed by either a canonical discriminant analysis (CDA, when the hypothesis concerns groups) or a canonical correlation analysis (CCorA, when the hypothesis concerns relationships with environmental or other variables), to provide a flexible and meaningful constrained ordination of ecological species abundance data. Called "CAP" for "Canonical Analysis of Principal coordinates," this method will allow a constrained ordination to be done on the basis of any distance or dissimilarity measure. We describe CAP in detail, including how it can uncover patterns that are masked in an unconstrained MDS ordination. Canonical tests using permutations are also given, and we show how the method can be used (1) to place a new observation into the canonical space using only interpoint dissimilarities, (2) to classify observations and obtain misclassification or residual errors, and (3) to correlate the original variables with patterns on canonical plots. Misclassification error or residual error is used to obtain a non-arbitrary decision concerning the appropriate dimensionality of the response data cloud (number of PCO axes) for the ensuing canonical analysis. We suggest that a CAP ordination and an unconstrained ordination, such as MDS, together will provide important information for meaningful multivariate analyses of ecological data by reference to explicit a priori hypotheses.
doi_str_mv 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18752798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3107905</jstor_id><sourcerecordid>3107905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5411-5d05f79ed721461911b568beb8020c974b9637ab34e8c64af10bc8acb9dcd1eb3</originalsourceid><addsrcrecordid>eNqdkUGL1DAYhosoOK7-Aw9FUPTQ2e9L0zbZPZUwrsJKF3EPIhKSNNUM3WZMOsj8e1O6rODRXALJk-cj75tl5whbZBzOAZAUvK7YWwJQvgNGv0GFeCHa7ka038kWtqK7JI-yDfKSFxwbeJxtHl49zZ7FuIe0kLJNpoWa_OSMGvN2UuMpupj7Ib8JbjLukE6F96F3k5ptvMjb_Dba4Tjmn-z80_cLKfwU56DcZPu8W0nnp3zwId8ZP_ofp-fZk0GN0b6438-y2_e7L-JDcd1dfRTtdWEqilhUPVRDw23fEKQ1ckRd1UxbzYCA4Q3VvC4bpUtqmampGhC0Ycpo3pserS7Psjer9xD8r6ONs7xz0dhxVJP1xyiRNRVpOEvgq3_AvT-G9PsoSYq4bhjlCbpaIRN8jMEO8hDcnQoniSCXIuQSqVwilUsRMhUhlyLkWoQkEqToJEmm1_fjVEw5D0GlaONfHa0pUr5M_Lxyv91oT_87Tu7E1wVglKTbJH25Svdx9uFBWiI0HKryD9j2rFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218967849</pqid></control><display><type>article</type><title>Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anderson, Marti J. ; Willis, Trevor J.</creator><creatorcontrib>Anderson, Marti J. ; Willis, Trevor J.</creatorcontrib><description>A flexible method is needed for constrained ordination on the basis of any distance or dissimilarity measure, which will display a cloud of multivariate points by reference to a specific a priori hypothesis. We suggest the use of principal coordinate analysis (PCO, metric MDS), followed by either a canonical discriminant analysis (CDA, when the hypothesis concerns groups) or a canonical correlation analysis (CCorA, when the hypothesis concerns relationships with environmental or other variables), to provide a flexible and meaningful constrained ordination of ecological species abundance data. Called "CAP" for "Canonical Analysis of Principal coordinates," this method will allow a constrained ordination to be done on the basis of any distance or dissimilarity measure. We describe CAP in detail, including how it can uncover patterns that are masked in an unconstrained MDS ordination. Canonical tests using permutations are also given, and we show how the method can be used (1) to place a new observation into the canonical space using only interpoint dissimilarities, (2) to classify observations and obtain misclassification or residual errors, and (3) to correlate the original variables with patterns on canonical plots. Misclassification error or residual error is used to obtain a non-arbitrary decision concerning the appropriate dimensionality of the response data cloud (number of PCO axes) for the ensuing canonical analysis. We suggest that a CAP ordination and an unconstrained ordination, such as MDS, together will provide important information for meaningful multivariate analyses of ecological data by reference to explicit a priori hypotheses.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>A priori knowledge ; Animal, plant and microbial ecology ; Biological and medical sciences ; canonical ordination ; Classification ; community structure ; Coordinate systems ; Correlations ; distance matrix ; Ecology ; Eigenvalues ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Marine ecology ; MDS ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Multidimensional scaling ; Multivariate analysis ; Ordination ; Population ecology ; principal coordinate analysis ; Space based observatories ; Species ; species abundances ; statistical methods</subject><ispartof>Ecology (Durham), 2003-02, Vol.84 (2), p.511-525</ispartof><rights>Copyright 2003 Ecological Society of America</rights><rights>2003 by the Ecological Society of America</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Ecological Society of America Feb 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5411-5d05f79ed721461911b568beb8020c974b9637ab34e8c64af10bc8acb9dcd1eb3</citedby><cites>FETCH-LOGICAL-c5411-5d05f79ed721461911b568beb8020c974b9637ab34e8c64af10bc8acb9dcd1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3107905$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3107905$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14641499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Marti J.</creatorcontrib><creatorcontrib>Willis, Trevor J.</creatorcontrib><title>Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology</title><title>Ecology (Durham)</title><description>A flexible method is needed for constrained ordination on the basis of any distance or dissimilarity measure, which will display a cloud of multivariate points by reference to a specific a priori hypothesis. We suggest the use of principal coordinate analysis (PCO, metric MDS), followed by either a canonical discriminant analysis (CDA, when the hypothesis concerns groups) or a canonical correlation analysis (CCorA, when the hypothesis concerns relationships with environmental or other variables), to provide a flexible and meaningful constrained ordination of ecological species abundance data. Called "CAP" for "Canonical Analysis of Principal coordinates," this method will allow a constrained ordination to be done on the basis of any distance or dissimilarity measure. We describe CAP in detail, including how it can uncover patterns that are masked in an unconstrained MDS ordination. Canonical tests using permutations are also given, and we show how the method can be used (1) to place a new observation into the canonical space using only interpoint dissimilarities, (2) to classify observations and obtain misclassification or residual errors, and (3) to correlate the original variables with patterns on canonical plots. Misclassification error or residual error is used to obtain a non-arbitrary decision concerning the appropriate dimensionality of the response data cloud (number of PCO axes) for the ensuing canonical analysis. We suggest that a CAP ordination and an unconstrained ordination, such as MDS, together will provide important information for meaningful multivariate analyses of ecological data by reference to explicit a priori hypotheses.</description><subject>A priori knowledge</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>canonical ordination</subject><subject>Classification</subject><subject>community structure</subject><subject>Coordinate systems</subject><subject>Correlations</subject><subject>distance matrix</subject><subject>Ecology</subject><subject>Eigenvalues</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Marine ecology</subject><subject>MDS</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Multidimensional scaling</subject><subject>Multivariate analysis</subject><subject>Ordination</subject><subject>Population ecology</subject><subject>principal coordinate analysis</subject><subject>Space based observatories</subject><subject>Species</subject><subject>species abundances</subject><subject>statistical methods</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqdkUGL1DAYhosoOK7-Aw9FUPTQ2e9L0zbZPZUwrsJKF3EPIhKSNNUM3WZMOsj8e1O6rODRXALJk-cj75tl5whbZBzOAZAUvK7YWwJQvgNGv0GFeCHa7ka038kWtqK7JI-yDfKSFxwbeJxtHl49zZ7FuIe0kLJNpoWa_OSMGvN2UuMpupj7Ib8JbjLukE6F96F3k5ptvMjb_Dba4Tjmn-z80_cLKfwU56DcZPu8W0nnp3zwId8ZP_ofp-fZk0GN0b6438-y2_e7L-JDcd1dfRTtdWEqilhUPVRDw23fEKQ1ckRd1UxbzYCA4Q3VvC4bpUtqmampGhC0Ycpo3pserS7Psjer9xD8r6ONs7xz0dhxVJP1xyiRNRVpOEvgq3_AvT-G9PsoSYq4bhjlCbpaIRN8jMEO8hDcnQoniSCXIuQSqVwilUsRMhUhlyLkWoQkEqToJEmm1_fjVEw5D0GlaONfHa0pUr5M_Lxyv91oT_87Tu7E1wVglKTbJH25Svdx9uFBWiI0HKryD9j2rFE</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Anderson, Marti J.</creator><creator>Willis, Trevor J.</creator><general>Ecological Society of America</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>200302</creationdate><title>Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology</title><author>Anderson, Marti J. ; Willis, Trevor J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5411-5d05f79ed721461911b568beb8020c974b9637ab34e8c64af10bc8acb9dcd1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>A priori knowledge</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>canonical ordination</topic><topic>Classification</topic><topic>community structure</topic><topic>Coordinate systems</topic><topic>Correlations</topic><topic>distance matrix</topic><topic>Ecology</topic><topic>Eigenvalues</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Marine ecology</topic><topic>MDS</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Multidimensional scaling</topic><topic>Multivariate analysis</topic><topic>Ordination</topic><topic>Population ecology</topic><topic>principal coordinate analysis</topic><topic>Space based observatories</topic><topic>Species</topic><topic>species abundances</topic><topic>statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Marti J.</creatorcontrib><creatorcontrib>Willis, Trevor J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Marti J.</au><au>Willis, Trevor J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology</atitle><jtitle>Ecology (Durham)</jtitle><date>2003-02</date><risdate>2003</risdate><volume>84</volume><issue>2</issue><spage>511</spage><epage>525</epage><pages>511-525</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>A flexible method is needed for constrained ordination on the basis of any distance or dissimilarity measure, which will display a cloud of multivariate points by reference to a specific a priori hypothesis. We suggest the use of principal coordinate analysis (PCO, metric MDS), followed by either a canonical discriminant analysis (CDA, when the hypothesis concerns groups) or a canonical correlation analysis (CCorA, when the hypothesis concerns relationships with environmental or other variables), to provide a flexible and meaningful constrained ordination of ecological species abundance data. Called "CAP" for "Canonical Analysis of Principal coordinates," this method will allow a constrained ordination to be done on the basis of any distance or dissimilarity measure. We describe CAP in detail, including how it can uncover patterns that are masked in an unconstrained MDS ordination. Canonical tests using permutations are also given, and we show how the method can be used (1) to place a new observation into the canonical space using only interpoint dissimilarities, (2) to classify observations and obtain misclassification or residual errors, and (3) to correlate the original variables with patterns on canonical plots. Misclassification error or residual error is used to obtain a non-arbitrary decision concerning the appropriate dimensionality of the response data cloud (number of PCO axes) for the ensuing canonical analysis. We suggest that a CAP ordination and an unconstrained ordination, such as MDS, together will provide important information for meaningful multivariate analyses of ecological data by reference to explicit a priori hypotheses.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><doi>10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2003-02, Vol.84 (2), p.511-525
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_18752798
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects A priori knowledge
Animal, plant and microbial ecology
Biological and medical sciences
canonical ordination
Classification
community structure
Coordinate systems
Correlations
distance matrix
Ecology
Eigenvalues
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Marine ecology
MDS
Methods and techniques (sampling, tagging, trapping, modelling...)
Multidimensional scaling
Multivariate analysis
Ordination
Population ecology
principal coordinate analysis
Space based observatories
Species
species abundances
statistical methods
title Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Analysis%20of%20Principal%20Coordinates:%20A%20Useful%20Method%20of%20Constrained%20Ordination%20for%20Ecology&rft.jtitle=Ecology%20(Durham)&rft.au=Anderson,%20Marti%20J.&rft.date=2003-02&rft.volume=84&rft.issue=2&rft.spage=511&rft.epage=525&rft.pages=511-525&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/0012-9658(2003)084%5B0511:CAOPCA%5D2.0.CO;2&rft_dat=%3Cjstor_proqu%3E3107905%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218967849&rft_id=info:pmid/&rft_jstor_id=3107905&rfr_iscdi=true