Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation

We report a variety of experiments and calculations and their interpretations regarding methyl group (CH ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state nuclear magnetic resonance 2017-09, Vol.85-86, p.1-11
Hauptverfasser: Beckmann, Peter A, Bohen, Joseph M, Ford, Jamie, Malachowski, William P, Mallory, Clelia W, Mallory, Frank B, McGhie, Andrew R, Rheingold, Arnold L, Sloan, Gilbert J, Szewczyk, Steven T, Wang, Xianlong, Wheeler, Kraig A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Solid state nuclear magnetic resonance
container_volume 85-86
creator Beckmann, Peter A
Bohen, Joseph M
Ford, Jamie
Malachowski, William P
Mallory, Clelia W
Mallory, Frank B
McGhie, Andrew R
Rheingold, Arnold L
Sloan, Gilbert J
Szewczyk, Steven T
Wang, Xianlong
Wheeler, Kraig A
description We report a variety of experiments and calculations and their interpretations regarding methyl group (CH ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C H O (1) + H O → C H O (2)]. The techniques are solid state H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution H NMR spectroscopy. The solid state H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images.
doi_str_mv 10.1016/j.ssnmr.2017.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1874788156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874788156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-3654b312ddcb27ecaa345f746b51d9022216d322364c8fdbeaffc8699603a8553</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwBUjISzYJYzt20iWqeElFbGCJLMdxWldJXDwJUv6elhZWd3PPzNUh5JpByoCpu02K2LUx5cDyFFgKkJ2QKZM8T4Tg6pRMYc5VwiGDCblA3ABAzoQ6JxNecAWK8Sn5fA2d70P03Yoair7dNo6uxyqGZkSPdBuDdYjUd9R0NMSV6bylGBpf0XKkoUQXv_dw6_r12NBVDMOWxtCb3ofukpzVpkF3dcwZ-Xh8eF88J8u3p5fF_TKxXMo-EUpmpWC8qmzJc2eNEZms80yVklVz4JwzVQnOhcpsUVelM3VtCzWfKxCmkFLMyO3h7m7u1-Cw161H65rGdC4MqFmRZ3lRMKl2VXGo2hgQo6v1NvrWxFEz0HuveqN_veq9Vw1M77zuqJvjg6FsXfXP_IkUP_y9drc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874788156</pqid></control><display><type>article</type><title>Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation</title><source>Elsevier ScienceDirect Journals</source><creator>Beckmann, Peter A ; Bohen, Joseph M ; Ford, Jamie ; Malachowski, William P ; Mallory, Clelia W ; Mallory, Frank B ; McGhie, Andrew R ; Rheingold, Arnold L ; Sloan, Gilbert J ; Szewczyk, Steven T ; Wang, Xianlong ; Wheeler, Kraig A</creator><creatorcontrib>Beckmann, Peter A ; Bohen, Joseph M ; Ford, Jamie ; Malachowski, William P ; Mallory, Clelia W ; Mallory, Frank B ; McGhie, Andrew R ; Rheingold, Arnold L ; Sloan, Gilbert J ; Szewczyk, Steven T ; Wang, Xianlong ; Wheeler, Kraig A</creatorcontrib><description>We report a variety of experiments and calculations and their interpretations regarding methyl group (CH ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C H O (1) + H O → C H O (2)]. The techniques are solid state H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution H NMR spectroscopy. The solid state H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images.</description><identifier>ISSN: 0926-2040</identifier><identifier>EISSN: 1527-3326</identifier><identifier>DOI: 10.1016/j.ssnmr.2017.01.004</identifier><identifier>PMID: 28260612</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>Solid state nuclear magnetic resonance, 2017-09, Vol.85-86, p.1-11</ispartof><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-3654b312ddcb27ecaa345f746b51d9022216d322364c8fdbeaffc8699603a8553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28260612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Peter A</creatorcontrib><creatorcontrib>Bohen, Joseph M</creatorcontrib><creatorcontrib>Ford, Jamie</creatorcontrib><creatorcontrib>Malachowski, William P</creatorcontrib><creatorcontrib>Mallory, Clelia W</creatorcontrib><creatorcontrib>Mallory, Frank B</creatorcontrib><creatorcontrib>McGhie, Andrew R</creatorcontrib><creatorcontrib>Rheingold, Arnold L</creatorcontrib><creatorcontrib>Sloan, Gilbert J</creatorcontrib><creatorcontrib>Szewczyk, Steven T</creatorcontrib><creatorcontrib>Wang, Xianlong</creatorcontrib><creatorcontrib>Wheeler, Kraig A</creatorcontrib><title>Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation</title><title>Solid state nuclear magnetic resonance</title><addtitle>Solid State Nucl Magn Reson</addtitle><description>We report a variety of experiments and calculations and their interpretations regarding methyl group (CH ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C H O (1) + H O → C H O (2)]. The techniques are solid state H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution H NMR spectroscopy. The solid state H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images.</description><issn>0926-2040</issn><issn>1527-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwBUjISzYJYzt20iWqeElFbGCJLMdxWldJXDwJUv6elhZWd3PPzNUh5JpByoCpu02K2LUx5cDyFFgKkJ2QKZM8T4Tg6pRMYc5VwiGDCblA3ABAzoQ6JxNecAWK8Sn5fA2d70P03Yoair7dNo6uxyqGZkSPdBuDdYjUd9R0NMSV6bylGBpf0XKkoUQXv_dw6_r12NBVDMOWxtCb3ofukpzVpkF3dcwZ-Xh8eF88J8u3p5fF_TKxXMo-EUpmpWC8qmzJc2eNEZms80yVklVz4JwzVQnOhcpsUVelM3VtCzWfKxCmkFLMyO3h7m7u1-Cw161H65rGdC4MqFmRZ3lRMKl2VXGo2hgQo6v1NvrWxFEz0HuveqN_veq9Vw1M77zuqJvjg6FsXfXP_IkUP_y9drc</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Beckmann, Peter A</creator><creator>Bohen, Joseph M</creator><creator>Ford, Jamie</creator><creator>Malachowski, William P</creator><creator>Mallory, Clelia W</creator><creator>Mallory, Frank B</creator><creator>McGhie, Andrew R</creator><creator>Rheingold, Arnold L</creator><creator>Sloan, Gilbert J</creator><creator>Szewczyk, Steven T</creator><creator>Wang, Xianlong</creator><creator>Wheeler, Kraig A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation</title><author>Beckmann, Peter A ; Bohen, Joseph M ; Ford, Jamie ; Malachowski, William P ; Mallory, Clelia W ; Mallory, Frank B ; McGhie, Andrew R ; Rheingold, Arnold L ; Sloan, Gilbert J ; Szewczyk, Steven T ; Wang, Xianlong ; Wheeler, Kraig A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-3654b312ddcb27ecaa345f746b51d9022216d322364c8fdbeaffc8699603a8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Peter A</creatorcontrib><creatorcontrib>Bohen, Joseph M</creatorcontrib><creatorcontrib>Ford, Jamie</creatorcontrib><creatorcontrib>Malachowski, William P</creatorcontrib><creatorcontrib>Mallory, Clelia W</creatorcontrib><creatorcontrib>Mallory, Frank B</creatorcontrib><creatorcontrib>McGhie, Andrew R</creatorcontrib><creatorcontrib>Rheingold, Arnold L</creatorcontrib><creatorcontrib>Sloan, Gilbert J</creatorcontrib><creatorcontrib>Szewczyk, Steven T</creatorcontrib><creatorcontrib>Wang, Xianlong</creatorcontrib><creatorcontrib>Wheeler, Kraig A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Solid state nuclear magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckmann, Peter A</au><au>Bohen, Joseph M</au><au>Ford, Jamie</au><au>Malachowski, William P</au><au>Mallory, Clelia W</au><au>Mallory, Frank B</au><au>McGhie, Andrew R</au><au>Rheingold, Arnold L</au><au>Sloan, Gilbert J</au><au>Szewczyk, Steven T</au><au>Wang, Xianlong</au><au>Wheeler, Kraig A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation</atitle><jtitle>Solid state nuclear magnetic resonance</jtitle><addtitle>Solid State Nucl Magn Reson</addtitle><date>2017-09</date><risdate>2017</risdate><volume>85-86</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0926-2040</issn><eissn>1527-3326</eissn><abstract>We report a variety of experiments and calculations and their interpretations regarding methyl group (CH ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C H O (1) + H O → C H O (2)]. The techniques are solid state H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution H NMR spectroscopy. The solid state H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images.</abstract><cop>Netherlands</cop><pmid>28260612</pmid><doi>10.1016/j.ssnmr.2017.01.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2040
ispartof Solid state nuclear magnetic resonance, 2017-09, Vol.85-86, p.1-11
issn 0926-2040
1527-3326
language eng
recordid cdi_proquest_miscellaneous_1874788156
source Elsevier ScienceDirect Journals
title Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20a%20simple%20hydrolysis%20process%20in%20an%20organic%20solid%20by%20observing%20methyl%20group%20rotation&rft.jtitle=Solid%20state%20nuclear%20magnetic%20resonance&rft.au=Beckmann,%20Peter%20A&rft.date=2017-09&rft.volume=85-86&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0926-2040&rft.eissn=1527-3326&rft_id=info:doi/10.1016/j.ssnmr.2017.01.004&rft_dat=%3Cproquest_cross%3E1874788156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874788156&rft_id=info:pmid/28260612&rfr_iscdi=true