Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids

The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis grou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2017-03, Vol.27 (6), p.833-839
Hauptverfasser: Menegazzi, Pamela, Dalla Benetta, Elena, Beauchamp, Marta, Schlichting, Matthias, Steffan-Dewenter, Ingolf, Helfrich-Förster, Charlotte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 839
container_issue 6
container_start_page 833
container_title Current biology
container_volume 27
creator Menegazzi, Pamela
Dalla Benetta, Elena
Beauchamp, Marta
Schlichting, Matthias
Steffan-Dewenter, Ingolf
Helfrich-Förster, Charlotte
description The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies’ locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4–6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7–11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments. [Display omitted] •This is the first detailed analysis of fruit fly daily activity under long days•D. ezoana and D. littoralis circadian clock differ from that of D. melanogaster•In flies, CRY and PDF are essential for adapting to long days•Changing CRY/PDF distribution in melanogaster mimics northern species daily activity The circadian clock modulates daily activity. Menegazzi et al. found a functional link between the clock neurochemistry of fruit flies species and their ability to adjust activity to long summer days. The expression pattern of clock components in northern species might be of advantage for life in the north.
doi_str_mv 10.1016/j.cub.2017.01.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1874786582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982217300684</els_id><sourcerecordid>1874786582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-72d7064737e40721b1a330ced91ae3c7bfcf8d6cf53f6aa707d3a3b49ae3e02e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qCJaPH9BLlWMvScd21k7ECW35qLQCDu0Vy7EnXS_ZONhOEf8eo4Uee_JIft5XMw8hXyhUFKj4vq3M3FUMqKyAVsDFJ7KgjWxLqOvlZ7KAVkDZNowdkeMYtwCUNa04JEesYYLVLV2Qhwurp6ST82Ph-2LlgtHW6bG4xTn4UQ95SM8-PBbJF_cbn_yEwXlbuLG4cX825Tpn02yxuMz8hDn5I_jop40bnI2n5KDXQ8Sz9_eE_L66_LW6Kdd31z9XF-vS1IKlUjIrQdSSS6xBMtpRzTkYtC3VyI3setM3Vph-yXuhtQRpueZd3eZfBIb8hHzb907BP80Yk9q5aHAY9Ih-jipbqWUjlg3LKN2jJu8ZA_ZqCm6nw4uioN60qq3KWtWbVgVUZa058_W9fu52aP8lPjxm4HwPYD7yr8OgonE45gtcQJOU9e4_9a-vVIk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874786582</pqid></control><display><type>article</type><title>Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Menegazzi, Pamela ; Dalla Benetta, Elena ; Beauchamp, Marta ; Schlichting, Matthias ; Steffan-Dewenter, Ingolf ; Helfrich-Förster, Charlotte</creator><creatorcontrib>Menegazzi, Pamela ; Dalla Benetta, Elena ; Beauchamp, Marta ; Schlichting, Matthias ; Steffan-Dewenter, Ingolf ; Helfrich-Förster, Charlotte</creatorcontrib><description>The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies’ locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4–6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7–11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments. [Display omitted] •This is the first detailed analysis of fruit fly daily activity under long days•D. ezoana and D. littoralis circadian clock differ from that of D. melanogaster•In flies, CRY and PDF are essential for adapting to long days•Changing CRY/PDF distribution in melanogaster mimics northern species daily activity The circadian clock modulates daily activity. Menegazzi et al. found a functional link between the clock neurochemistry of fruit flies species and their ability to adjust activity to long summer days. The expression pattern of clock components in northern species might be of advantage for life in the north.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2017.01.036</identifier><identifier>PMID: 28262491</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Circadian Clocks - genetics ; circadian rhythms ; cryptochrome ; Drosophila - genetics ; Drosophila - physiology ; Drosophila ezoana ; Drosophila littoralis ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Finland ; Locomotion ; low and high latitudes ; Male ; Nerve Net - physiology ; Photoperiod ; pigment dispersing factor ; Species Specificity ; Tanzania</subject><ispartof>Current biology, 2017-03, Vol.27 (6), p.833-839</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-72d7064737e40721b1a330ced91ae3c7bfcf8d6cf53f6aa707d3a3b49ae3e02e3</citedby><cites>FETCH-LOGICAL-c462t-72d7064737e40721b1a330ced91ae3c7bfcf8d6cf53f6aa707d3a3b49ae3e02e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2017.01.036$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28262491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menegazzi, Pamela</creatorcontrib><creatorcontrib>Dalla Benetta, Elena</creatorcontrib><creatorcontrib>Beauchamp, Marta</creatorcontrib><creatorcontrib>Schlichting, Matthias</creatorcontrib><creatorcontrib>Steffan-Dewenter, Ingolf</creatorcontrib><creatorcontrib>Helfrich-Förster, Charlotte</creatorcontrib><title>Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies’ locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4–6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7–11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments. [Display omitted] •This is the first detailed analysis of fruit fly daily activity under long days•D. ezoana and D. littoralis circadian clock differ from that of D. melanogaster•In flies, CRY and PDF are essential for adapting to long days•Changing CRY/PDF distribution in melanogaster mimics northern species daily activity The circadian clock modulates daily activity. Menegazzi et al. found a functional link between the clock neurochemistry of fruit flies species and their ability to adjust activity to long summer days. The expression pattern of clock components in northern species might be of advantage for life in the north.</description><subject>Animals</subject><subject>Circadian Clocks - genetics</subject><subject>circadian rhythms</subject><subject>cryptochrome</subject><subject>Drosophila - genetics</subject><subject>Drosophila - physiology</subject><subject>Drosophila ezoana</subject><subject>Drosophila littoralis</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Finland</subject><subject>Locomotion</subject><subject>low and high latitudes</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Photoperiod</subject><subject>pigment dispersing factor</subject><subject>Species Specificity</subject><subject>Tanzania</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq2qCJaPH9BLlWMvScd21k7ECW35qLQCDu0Vy7EnXS_ZONhOEf8eo4Uee_JIft5XMw8hXyhUFKj4vq3M3FUMqKyAVsDFJ7KgjWxLqOvlZ7KAVkDZNowdkeMYtwCUNa04JEesYYLVLV2Qhwurp6ST82Ph-2LlgtHW6bG4xTn4UQ95SM8-PBbJF_cbn_yEwXlbuLG4cX825Tpn02yxuMz8hDn5I_jop40bnI2n5KDXQ8Sz9_eE_L66_LW6Kdd31z9XF-vS1IKlUjIrQdSSS6xBMtpRzTkYtC3VyI3setM3Vph-yXuhtQRpueZd3eZfBIb8hHzb907BP80Yk9q5aHAY9Ih-jipbqWUjlg3LKN2jJu8ZA_ZqCm6nw4uioN60qq3KWtWbVgVUZa058_W9fu52aP8lPjxm4HwPYD7yr8OgonE45gtcQJOU9e4_9a-vVIk4</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Menegazzi, Pamela</creator><creator>Dalla Benetta, Elena</creator><creator>Beauchamp, Marta</creator><creator>Schlichting, Matthias</creator><creator>Steffan-Dewenter, Ingolf</creator><creator>Helfrich-Förster, Charlotte</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170320</creationdate><title>Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids</title><author>Menegazzi, Pamela ; Dalla Benetta, Elena ; Beauchamp, Marta ; Schlichting, Matthias ; Steffan-Dewenter, Ingolf ; Helfrich-Förster, Charlotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-72d7064737e40721b1a330ced91ae3c7bfcf8d6cf53f6aa707d3a3b49ae3e02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Circadian Clocks - genetics</topic><topic>circadian rhythms</topic><topic>cryptochrome</topic><topic>Drosophila - genetics</topic><topic>Drosophila - physiology</topic><topic>Drosophila ezoana</topic><topic>Drosophila littoralis</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Finland</topic><topic>Locomotion</topic><topic>low and high latitudes</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Photoperiod</topic><topic>pigment dispersing factor</topic><topic>Species Specificity</topic><topic>Tanzania</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menegazzi, Pamela</creatorcontrib><creatorcontrib>Dalla Benetta, Elena</creatorcontrib><creatorcontrib>Beauchamp, Marta</creatorcontrib><creatorcontrib>Schlichting, Matthias</creatorcontrib><creatorcontrib>Steffan-Dewenter, Ingolf</creatorcontrib><creatorcontrib>Helfrich-Förster, Charlotte</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menegazzi, Pamela</au><au>Dalla Benetta, Elena</au><au>Beauchamp, Marta</au><au>Schlichting, Matthias</au><au>Steffan-Dewenter, Ingolf</au><au>Helfrich-Förster, Charlotte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2017-03-20</date><risdate>2017</risdate><volume>27</volume><issue>6</issue><spage>833</spage><epage>839</epage><pages>833-839</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies’ locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4–6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7–11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments. [Display omitted] •This is the first detailed analysis of fruit fly daily activity under long days•D. ezoana and D. littoralis circadian clock differ from that of D. melanogaster•In flies, CRY and PDF are essential for adapting to long days•Changing CRY/PDF distribution in melanogaster mimics northern species daily activity The circadian clock modulates daily activity. Menegazzi et al. found a functional link between the clock neurochemistry of fruit flies species and their ability to adjust activity to long summer days. The expression pattern of clock components in northern species might be of advantage for life in the north.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28262491</pmid><doi>10.1016/j.cub.2017.01.036</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2017-03, Vol.27 (6), p.833-839
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_1874786582
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Animals
Circadian Clocks - genetics
circadian rhythms
cryptochrome
Drosophila - genetics
Drosophila - physiology
Drosophila ezoana
Drosophila littoralis
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Finland
Locomotion
low and high latitudes
Male
Nerve Net - physiology
Photoperiod
pigment dispersing factor
Species Specificity
Tanzania
title Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20Circadian%20Neuronal%20Network%20to%20Photoperiod%20in%20High-Latitude%20European%20Drosophilids&rft.jtitle=Current%20biology&rft.au=Menegazzi,%20Pamela&rft.date=2017-03-20&rft.volume=27&rft.issue=6&rft.spage=833&rft.epage=839&rft.pages=833-839&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2017.01.036&rft_dat=%3Cproquest_cross%3E1874786582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874786582&rft_id=info:pmid/28262491&rft_els_id=S0960982217300684&rfr_iscdi=true