Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles
The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experiment...
Gespeichert in:
Veröffentlicht in: | Langmuir 2017-03, Vol.33 (11), p.2920-2928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2928 |
---|---|
container_issue | 11 |
container_start_page | 2920 |
container_title | Langmuir |
container_volume | 33 |
creator | Cho, Heon Ki Nikolov, Alex D Wasan, Darsh T |
description | The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10–4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10–7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity. |
doi_str_mv | 10.1021/acs.langmuir.6b04489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1874442009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874442009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-6ebfad6c9b51c7267caa41474a99ba522a4f175805d58ba1348d272a9d0cade73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwh5ySbFduzYWfIGqQKJ5zIaO04xcpNgJ0L9exK1sGQ1i7nnjuYgdEzJnBJGz8DEuYd6uepdmGeacK7yHTSlgpFEKCZ30ZRIniaSZ-kEHcT4SQjJU57vowlTTLA8U1NUP3e2Td5dtPjN-sa4bo2bCkONz13AF73W3uInF129xK7GMKRC5wx4_NJri2-c97bE3677GHYL99W7El-52NoQXVOPVQ9QNy2MkLfxEO1V4KM92s4Zer25frm8SxaPt_eX54sEUiW6JLO6gjIzuRbUSJZJA8AplxzyXINgDHhFpVBElEJpoClXJZMM8pIYKK1MZ-h009uG5qu3sStWLhrrB2G26WNBleScs1HIDPFN1IQmxmCrog1uBWFdUFKMpovBdPFrutiaHrCT7YVer2z5B_2qHQJkExjxz6YP9fDw_50_xS2OLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874442009</pqid></control><display><type>article</type><title>Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles</title><source>ACS Publications</source><creator>Cho, Heon Ki ; Nikolov, Alex D ; Wasan, Darsh T</creator><creatorcontrib>Cho, Heon Ki ; Nikolov, Alex D ; Wasan, Darsh T</creatorcontrib><description>The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10–4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10–7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04489</identifier><identifier>PMID: 28252968</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-03, Vol.33 (11), p.2920-2928</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-6ebfad6c9b51c7267caa41474a99ba522a4f175805d58ba1348d272a9d0cade73</citedby><cites>FETCH-LOGICAL-a385t-6ebfad6c9b51c7267caa41474a99ba522a4f175805d58ba1348d272a9d0cade73</cites><orcidid>0000-0002-5079-027X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b04489$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b04489$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Heon Ki</creatorcontrib><creatorcontrib>Nikolov, Alex D</creatorcontrib><creatorcontrib>Wasan, Darsh T</creatorcontrib><title>Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10–4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10–7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwh5ySbFduzYWfIGqQKJ5zIaO04xcpNgJ0L9exK1sGQ1i7nnjuYgdEzJnBJGz8DEuYd6uepdmGeacK7yHTSlgpFEKCZ30ZRIniaSZ-kEHcT4SQjJU57vowlTTLA8U1NUP3e2Td5dtPjN-sa4bo2bCkONz13AF73W3uInF129xK7GMKRC5wx4_NJri2-c97bE3677GHYL99W7El-52NoQXVOPVQ9QNy2MkLfxEO1V4KM92s4Zer25frm8SxaPt_eX54sEUiW6JLO6gjIzuRbUSJZJA8AplxzyXINgDHhFpVBElEJpoClXJZMM8pIYKK1MZ-h009uG5qu3sStWLhrrB2G26WNBleScs1HIDPFN1IQmxmCrog1uBWFdUFKMpovBdPFrutiaHrCT7YVer2z5B_2qHQJkExjxz6YP9fDw_50_xS2OLw</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Cho, Heon Ki</creator><creator>Nikolov, Alex D</creator><creator>Wasan, Darsh T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5079-027X</orcidid></search><sort><creationdate>20170321</creationdate><title>Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles</title><author>Cho, Heon Ki ; Nikolov, Alex D ; Wasan, Darsh T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-6ebfad6c9b51c7267caa41474a99ba522a4f175805d58ba1348d272a9d0cade73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Heon Ki</creatorcontrib><creatorcontrib>Nikolov, Alex D</creatorcontrib><creatorcontrib>Wasan, Darsh T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Heon Ki</au><au>Nikolov, Alex D</au><au>Wasan, Darsh T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>33</volume><issue>11</issue><spage>2920</spage><epage>2928</epage><pages>2920-2928</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10–4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10–7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28252968</pmid><doi>10.1021/acs.langmuir.6b04489</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5079-027X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2017-03, Vol.33 (11), p.2920-2928 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1874442009 |
source | ACS Publications |
title | Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T10%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Step-Wise%20Velocity%20of%20an%20Air%20Bubble%20Rising%20in%20a%20Vertical%20Tube%20Filled%20with%20a%20Liquid%20Dispersion%20of%20Nanoparticles&rft.jtitle=Langmuir&rft.au=Cho,%20Heon%20Ki&rft.date=2017-03-21&rft.volume=33&rft.issue=11&rft.spage=2920&rft.epage=2928&rft.pages=2920-2928&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04489&rft_dat=%3Cproquest_cross%3E1874442009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874442009&rft_id=info:pmid/28252968&rfr_iscdi=true |