Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters

We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2017-05, Vol.23 (26), p.6441-6451
Hauptverfasser: Kempf, Julie, Schmitzer, Andreea R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6451
container_issue 26
container_start_page 6441
container_title Chemistry : a European journal
container_volume 23
creator Kempf, Julie
Schmitzer, Andreea R.
description We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold. Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.
doi_str_mv 10.1002/chem.201700847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1873721543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873721543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EouWyMqJILGVI8SW-hK2qCkWi6kCZI9txqEsuxU6FuvEOvCFPgqtCESxMx8P3fzo-PwBnCPYRhPhKz03VxxBxCEXC90AXUYxiwhndB12YJjxmlKQdcOT9AkKYMkIOQQcLTLFASRc8T0wry4-396l7krXV0cO6buemDa-Zk7VfNq41zke9yfRhdnkdjYrCamvqNhrOy8bZ3ESyzqNB3Vplm12sMpUK0_ySnICDQpbenH7NY_B4M5oNx_H99PZuOLiPdYIgjyUVCUOSEM2pSUXBuNIFVEwqw7FgOQs_UjmhUnOJEWeswDlnSkmJIFEhdwx6W-_SNS8r49ussl6bsgwLNSufIcEJx4gmG_TiD7poVq4O2wUqpYIQQXmg-ltKu8Z7Z4ps6Wwl3TpDMNvUkG1qyHY1hMD5l3alKpPv8O-7ByDdAq-2NOt_dNlwPJr8yD8BOnaVag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895833857</pqid></control><display><type>article</type><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kempf, Julie ; Schmitzer, Andreea R.</creator><creatorcontrib>Kempf, Julie ; Schmitzer, Andreea R.</creatorcontrib><description>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold. Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201700847</identifier><identifier>PMID: 28252814</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anions ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibacterial ; Antibiotics ; Assemblies ; Bacillus thuringiensis - drug effects ; Bacteria ; Chemistry ; Chloride resistance ; Chlorides - chemistry ; Chlorides - metabolism ; Coordination Complexes - chemistry ; Coordination Complexes - metabolism ; Coordination Complexes - pharmacology ; Drug Resistance, Bacterial - drug effects ; Ligands ; Liposomes - chemistry ; Liposomes - metabolism ; Membranes ; Metal-Organic Frameworks - chemical synthesis ; Metal-Organic Frameworks - chemistry ; Metals ; metal–organic assemblies ; Microbial Sensitivity Tests ; Palladium - chemistry ; Phospholipids ; Phospholipids - chemistry ; Spectrophotometry ; Tetracycline - chemistry ; Tetracycline - metabolism ; Tetracycline - pharmacology ; transmembrane transport</subject><ispartof>Chemistry : a European journal, 2017-05, Vol.23 (26), p.6441-6451</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</citedby><cites>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201700847$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201700847$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kempf, Julie</creatorcontrib><creatorcontrib>Schmitzer, Andreea R.</creatorcontrib><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold. Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</description><subject>anions</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial</subject><subject>Antibiotics</subject><subject>Assemblies</subject><subject>Bacillus thuringiensis - drug effects</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Chloride resistance</subject><subject>Chlorides - chemistry</subject><subject>Chlorides - metabolism</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - metabolism</subject><subject>Coordination Complexes - pharmacology</subject><subject>Drug Resistance, Bacterial - drug effects</subject><subject>Ligands</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Membranes</subject><subject>Metal-Organic Frameworks - chemical synthesis</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metals</subject><subject>metal–organic assemblies</subject><subject>Microbial Sensitivity Tests</subject><subject>Palladium - chemistry</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Spectrophotometry</subject><subject>Tetracycline - chemistry</subject><subject>Tetracycline - metabolism</subject><subject>Tetracycline - pharmacology</subject><subject>transmembrane transport</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOwzAUhi0EouWyMqJILGVI8SW-hK2qCkWi6kCZI9txqEsuxU6FuvEOvCFPgqtCESxMx8P3fzo-PwBnCPYRhPhKz03VxxBxCEXC90AXUYxiwhndB12YJjxmlKQdcOT9AkKYMkIOQQcLTLFASRc8T0wry4-396l7krXV0cO6buemDa-Zk7VfNq41zke9yfRhdnkdjYrCamvqNhrOy8bZ3ESyzqNB3Vplm12sMpUK0_ySnICDQpbenH7NY_B4M5oNx_H99PZuOLiPdYIgjyUVCUOSEM2pSUXBuNIFVEwqw7FgOQs_UjmhUnOJEWeswDlnSkmJIFEhdwx6W-_SNS8r49ussl6bsgwLNSufIcEJx4gmG_TiD7poVq4O2wUqpYIQQXmg-ltKu8Z7Z4ps6Wwl3TpDMNvUkG1qyHY1hMD5l3alKpPv8O-7ByDdAq-2NOt_dNlwPJr8yD8BOnaVag</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Kempf, Julie</creator><creator>Schmitzer, Andreea R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20170505</creationdate><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><author>Kempf, Julie ; Schmitzer, Andreea R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anions</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial</topic><topic>Antibiotics</topic><topic>Assemblies</topic><topic>Bacillus thuringiensis - drug effects</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Chloride resistance</topic><topic>Chlorides - chemistry</topic><topic>Chlorides - metabolism</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - metabolism</topic><topic>Coordination Complexes - pharmacology</topic><topic>Drug Resistance, Bacterial - drug effects</topic><topic>Ligands</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Membranes</topic><topic>Metal-Organic Frameworks - chemical synthesis</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metals</topic><topic>metal–organic assemblies</topic><topic>Microbial Sensitivity Tests</topic><topic>Palladium - chemistry</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Spectrophotometry</topic><topic>Tetracycline - chemistry</topic><topic>Tetracycline - metabolism</topic><topic>Tetracycline - pharmacology</topic><topic>transmembrane transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kempf, Julie</creatorcontrib><creatorcontrib>Schmitzer, Andreea R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kempf, Julie</au><au>Schmitzer, Andreea R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-05-05</date><risdate>2017</risdate><volume>23</volume><issue>26</issue><spage>6441</spage><epage>6451</epage><pages>6441-6451</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold. Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28252814</pmid><doi>10.1002/chem.201700847</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2017-05, Vol.23 (26), p.6441-6451
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1873721543
source MEDLINE; Access via Wiley Online Library
subjects anions
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
antibacterial
Antibiotics
Assemblies
Bacillus thuringiensis - drug effects
Bacteria
Chemistry
Chloride resistance
Chlorides - chemistry
Chlorides - metabolism
Coordination Complexes - chemistry
Coordination Complexes - metabolism
Coordination Complexes - pharmacology
Drug Resistance, Bacterial - drug effects
Ligands
Liposomes - chemistry
Liposomes - metabolism
Membranes
Metal-Organic Frameworks - chemical synthesis
Metal-Organic Frameworks - chemistry
Metals
metal–organic assemblies
Microbial Sensitivity Tests
Palladium - chemistry
Phospholipids
Phospholipids - chemistry
Spectrophotometry
Tetracycline - chemistry
Tetracycline - metabolism
Tetracycline - pharmacology
transmembrane transport
title Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Synthetic%20Transporters%20(MOST):%20Efficient%20Chloride%20and%20Antibiotic%20Transmembrane%20Transporters&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kempf,%20Julie&rft.date=2017-05-05&rft.volume=23&rft.issue=26&rft.spage=6441&rft.epage=6451&rft.pages=6441-6451&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201700847&rft_dat=%3Cproquest_cross%3E1873721543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895833857&rft_id=info:pmid/28252814&rfr_iscdi=true