Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters
We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholi...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2017-05, Vol.23 (26), p.6441-6451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6451 |
---|---|
container_issue | 26 |
container_start_page | 6441 |
container_title | Chemistry : a European journal |
container_volume | 23 |
creator | Kempf, Julie Schmitzer, Andreea R. |
description | We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold.
Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold. |
doi_str_mv | 10.1002/chem.201700847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1873721543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873721543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EouWyMqJILGVI8SW-hK2qCkWi6kCZI9txqEsuxU6FuvEOvCFPgqtCESxMx8P3fzo-PwBnCPYRhPhKz03VxxBxCEXC90AXUYxiwhndB12YJjxmlKQdcOT9AkKYMkIOQQcLTLFASRc8T0wry4-396l7krXV0cO6buemDa-Zk7VfNq41zke9yfRhdnkdjYrCamvqNhrOy8bZ3ESyzqNB3Vplm12sMpUK0_ySnICDQpbenH7NY_B4M5oNx_H99PZuOLiPdYIgjyUVCUOSEM2pSUXBuNIFVEwqw7FgOQs_UjmhUnOJEWeswDlnSkmJIFEhdwx6W-_SNS8r49ussl6bsgwLNSufIcEJx4gmG_TiD7poVq4O2wUqpYIQQXmg-ltKu8Z7Z4ps6Wwl3TpDMNvUkG1qyHY1hMD5l3alKpPv8O-7ByDdAq-2NOt_dNlwPJr8yD8BOnaVag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895833857</pqid></control><display><type>article</type><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kempf, Julie ; Schmitzer, Andreea R.</creator><creatorcontrib>Kempf, Julie ; Schmitzer, Andreea R.</creatorcontrib><description>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold.
Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201700847</identifier><identifier>PMID: 28252814</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anions ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibacterial ; Antibiotics ; Assemblies ; Bacillus thuringiensis - drug effects ; Bacteria ; Chemistry ; Chloride resistance ; Chlorides - chemistry ; Chlorides - metabolism ; Coordination Complexes - chemistry ; Coordination Complexes - metabolism ; Coordination Complexes - pharmacology ; Drug Resistance, Bacterial - drug effects ; Ligands ; Liposomes - chemistry ; Liposomes - metabolism ; Membranes ; Metal-Organic Frameworks - chemical synthesis ; Metal-Organic Frameworks - chemistry ; Metals ; metal–organic assemblies ; Microbial Sensitivity Tests ; Palladium - chemistry ; Phospholipids ; Phospholipids - chemistry ; Spectrophotometry ; Tetracycline - chemistry ; Tetracycline - metabolism ; Tetracycline - pharmacology ; transmembrane transport</subject><ispartof>Chemistry : a European journal, 2017-05, Vol.23 (26), p.6441-6451</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</citedby><cites>FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201700847$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201700847$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kempf, Julie</creatorcontrib><creatorcontrib>Schmitzer, Andreea R.</creatorcontrib><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold.
Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</description><subject>anions</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial</subject><subject>Antibiotics</subject><subject>Assemblies</subject><subject>Bacillus thuringiensis - drug effects</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Chloride resistance</subject><subject>Chlorides - chemistry</subject><subject>Chlorides - metabolism</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - metabolism</subject><subject>Coordination Complexes - pharmacology</subject><subject>Drug Resistance, Bacterial - drug effects</subject><subject>Ligands</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Membranes</subject><subject>Metal-Organic Frameworks - chemical synthesis</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metals</subject><subject>metal–organic assemblies</subject><subject>Microbial Sensitivity Tests</subject><subject>Palladium - chemistry</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Spectrophotometry</subject><subject>Tetracycline - chemistry</subject><subject>Tetracycline - metabolism</subject><subject>Tetracycline - pharmacology</subject><subject>transmembrane transport</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOwzAUhi0EouWyMqJILGVI8SW-hK2qCkWi6kCZI9txqEsuxU6FuvEOvCFPgqtCESxMx8P3fzo-PwBnCPYRhPhKz03VxxBxCEXC90AXUYxiwhndB12YJjxmlKQdcOT9AkKYMkIOQQcLTLFASRc8T0wry4-396l7krXV0cO6buemDa-Zk7VfNq41zke9yfRhdnkdjYrCamvqNhrOy8bZ3ESyzqNB3Vplm12sMpUK0_ySnICDQpbenH7NY_B4M5oNx_H99PZuOLiPdYIgjyUVCUOSEM2pSUXBuNIFVEwqw7FgOQs_UjmhUnOJEWeswDlnSkmJIFEhdwx6W-_SNS8r49ussl6bsgwLNSufIcEJx4gmG_TiD7poVq4O2wUqpYIQQXmg-ltKu8Z7Z4ps6Wwl3TpDMNvUkG1qyHY1hMD5l3alKpPv8O-7ByDdAq-2NOt_dNlwPJr8yD8BOnaVag</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Kempf, Julie</creator><creator>Schmitzer, Andreea R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20170505</creationdate><title>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</title><author>Kempf, Julie ; Schmitzer, Andreea R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-a58461a33c75e98f67bcf0b6abe7286d6653bd35ac7a21766f2d76bbaa103ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anions</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial</topic><topic>Antibiotics</topic><topic>Assemblies</topic><topic>Bacillus thuringiensis - drug effects</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Chloride resistance</topic><topic>Chlorides - chemistry</topic><topic>Chlorides - metabolism</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - metabolism</topic><topic>Coordination Complexes - pharmacology</topic><topic>Drug Resistance, Bacterial - drug effects</topic><topic>Ligands</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Membranes</topic><topic>Metal-Organic Frameworks - chemical synthesis</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metals</topic><topic>metal–organic assemblies</topic><topic>Microbial Sensitivity Tests</topic><topic>Palladium - chemistry</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Spectrophotometry</topic><topic>Tetracycline - chemistry</topic><topic>Tetracycline - metabolism</topic><topic>Tetracycline - pharmacology</topic><topic>transmembrane transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kempf, Julie</creatorcontrib><creatorcontrib>Schmitzer, Andreea R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kempf, Julie</au><au>Schmitzer, Andreea R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-05-05</date><risdate>2017</risdate><volume>23</volume><issue>26</issue><spage>6441</spage><epage>6451</epage><pages>6441-6451</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>We present the synthesis of two functionalized 2,4,7‐triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal–organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal–organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60‐fold.
Making the MOST of it: Formation of metal–organic synthetic transporters (MOST) in phospholipid membranes. MOST make the membranes of resistant bacteria more permeable to antibiotics. As a potential strategy to combat resistant bacteria, we demonstrate that the combination of MOST with tetracycline lowers the sensitivity of resistant bacteria by 60‐fold.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28252814</pmid><doi>10.1002/chem.201700847</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2017-05, Vol.23 (26), p.6441-6451 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1873721543 |
source | MEDLINE; Access via Wiley Online Library |
subjects | anions Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology antibacterial Antibiotics Assemblies Bacillus thuringiensis - drug effects Bacteria Chemistry Chloride resistance Chlorides - chemistry Chlorides - metabolism Coordination Complexes - chemistry Coordination Complexes - metabolism Coordination Complexes - pharmacology Drug Resistance, Bacterial - drug effects Ligands Liposomes - chemistry Liposomes - metabolism Membranes Metal-Organic Frameworks - chemical synthesis Metal-Organic Frameworks - chemistry Metals metal–organic assemblies Microbial Sensitivity Tests Palladium - chemistry Phospholipids Phospholipids - chemistry Spectrophotometry Tetracycline - chemistry Tetracycline - metabolism Tetracycline - pharmacology transmembrane transport |
title | Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Synthetic%20Transporters%20(MOST):%20Efficient%20Chloride%20and%20Antibiotic%20Transmembrane%20Transporters&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kempf,%20Julie&rft.date=2017-05-05&rft.volume=23&rft.issue=26&rft.spage=6441&rft.epage=6451&rft.pages=6441-6451&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201700847&rft_dat=%3Cproquest_cross%3E1873721543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895833857&rft_id=info:pmid/28252814&rfr_iscdi=true |