A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI
Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, es...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2018-01, Vol.79 (1), p.515-528 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 1 |
container_start_page | 515 |
container_title | Magnetic resonance in medicine |
container_volume | 79 |
creator | Cheng, Junying Mei, Yingjie Liu, Biaoshui Guan, Jijing Liu, Xiaoyun Wu, Ed X. Feng, Qianjin Chen, Wufan Feng, Yanqiu |
description | Purpose
To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions.
Theory and Methods
The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE).
Results
In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%.
Conclusions
The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
doi_str_mv | 10.1002/mrm.26647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1873403806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975953880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AIScFMX0-bfTJJlqa0WeikUXYfczBlvysxkTDLedtU-guAb9knM9VYXBcniBM53Pn7wQ-gtJYeUEHY0xOGQNY2Qz9CC1oxVrNbiOVoQKUjFqRZ76FVK14QQraV4ifaYYkIKThbo7hiP4Qf0eFrbBA_3P-dxE-00-fEbHiCvQ4tXZdHiMOLJ3xTQ9XPKELeAHVvcB2d7nObYWQe48zlvNxuf17hoeu9s9uU2B_zR35TPxpbjh_tfnc14eXX-Gr3obJ_gzePcR1_PTr-cfK4uLj-dnxxfVI4rJStOlHRUNASEbNoVrASAA-VkzTslGRekLY8QwUsMTp3WVnJSM-06oIoTvo8Odt4phu8zpGwGnxz0vR0hzMlQJYuEK9IU9P0T9DrMcSzpDNWy1nVJtBV-2FEuhpQidGaKfrDx1lBitq2Y0or500ph3z0a59UA7T_ybw0FONoBG9_D7f9NZnm13Cl_A-PXmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975953880</pqid></control><display><type>article</type><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</creator><creatorcontrib>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</creatorcontrib><description>Purpose
To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions.
Theory and Methods
The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE).
Results
In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%.
Conclusions
The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26647</identifier><identifier>PMID: 28247430</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adipose Tissue - diagnostic imaging ; Algorithms ; Ankle ; Ankle - diagnostic imaging ; Brain - diagnostic imaging ; Cluster Analysis ; Clustering ; Computer Simulation ; Data processing ; Healthy Volunteers ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; In vivo methods and tests ; Knee ; Knee - diagnostic imaging ; local polynomial surface fitting ; Magnetic Resonance Imaging ; Models, Statistical ; Noise ; Normal Distribution ; Phase transitions ; Phase unwrapping ; Phasors ; pixel clustering ; Pixels ; Signal-To-Noise Ratio ; Simulation ; thresholding ; Water ; water–fat separation</subject><ispartof>Magnetic resonance in medicine, 2018-01, Vol.79 (1), p.515-528</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</citedby><cites>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.26647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.26647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Junying</creatorcontrib><creatorcontrib>Mei, Yingjie</creatorcontrib><creatorcontrib>Liu, Biaoshui</creatorcontrib><creatorcontrib>Guan, Jijing</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><creatorcontrib>Feng, Yanqiu</creatorcontrib><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions.
Theory and Methods
The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE).
Results
In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%.
Conclusions
The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Adipose Tissue - diagnostic imaging</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Ankle - diagnostic imaging</subject><subject>Brain - diagnostic imaging</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>In vivo methods and tests</subject><subject>Knee</subject><subject>Knee - diagnostic imaging</subject><subject>local polynomial surface fitting</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>Noise</subject><subject>Normal Distribution</subject><subject>Phase transitions</subject><subject>Phase unwrapping</subject><subject>Phasors</subject><subject>pixel clustering</subject><subject>Pixels</subject><subject>Signal-To-Noise Ratio</subject><subject>Simulation</subject><subject>thresholding</subject><subject>Water</subject><subject>water–fat separation</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AIScFMX0-bfTJJlqa0WeikUXYfczBlvysxkTDLedtU-guAb9knM9VYXBcniBM53Pn7wQ-gtJYeUEHY0xOGQNY2Qz9CC1oxVrNbiOVoQKUjFqRZ76FVK14QQraV4ifaYYkIKThbo7hiP4Qf0eFrbBA_3P-dxE-00-fEbHiCvQ4tXZdHiMOLJ3xTQ9XPKELeAHVvcB2d7nObYWQe48zlvNxuf17hoeu9s9uU2B_zR35TPxpbjh_tfnc14eXX-Gr3obJ_gzePcR1_PTr-cfK4uLj-dnxxfVI4rJStOlHRUNASEbNoVrASAA-VkzTslGRekLY8QwUsMTp3WVnJSM-06oIoTvo8Odt4phu8zpGwGnxz0vR0hzMlQJYuEK9IU9P0T9DrMcSzpDNWy1nVJtBV-2FEuhpQidGaKfrDx1lBitq2Y0or500ph3z0a59UA7T_ybw0FONoBG9_D7f9NZnm13Cl_A-PXmNA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Cheng, Junying</creator><creator>Mei, Yingjie</creator><creator>Liu, Biaoshui</creator><creator>Guan, Jijing</creator><creator>Liu, Xiaoyun</creator><creator>Wu, Ed X.</creator><creator>Feng, Qianjin</creator><creator>Chen, Wufan</creator><creator>Feng, Yanqiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><author>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adipose Tissue - diagnostic imaging</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Ankle - diagnostic imaging</topic><topic>Brain - diagnostic imaging</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>In vivo methods and tests</topic><topic>Knee</topic><topic>Knee - diagnostic imaging</topic><topic>local polynomial surface fitting</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>Noise</topic><topic>Normal Distribution</topic><topic>Phase transitions</topic><topic>Phase unwrapping</topic><topic>Phasors</topic><topic>pixel clustering</topic><topic>Pixels</topic><topic>Signal-To-Noise Ratio</topic><topic>Simulation</topic><topic>thresholding</topic><topic>Water</topic><topic>water–fat separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Junying</creatorcontrib><creatorcontrib>Mei, Yingjie</creatorcontrib><creatorcontrib>Liu, Biaoshui</creatorcontrib><creatorcontrib>Guan, Jijing</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><creatorcontrib>Feng, Yanqiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Junying</au><au>Mei, Yingjie</au><au>Liu, Biaoshui</au><au>Guan, Jijing</au><au>Liu, Xiaoyun</au><au>Wu, Ed X.</au><au>Feng, Qianjin</au><au>Chen, Wufan</au><au>Feng, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2018-01</date><risdate>2018</risdate><volume>79</volume><issue>1</issue><spage>515</spage><epage>528</epage><pages>515-528</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions.
Theory and Methods
The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE).
Results
In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%.
Conclusions
The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28247430</pmid><doi>10.1002/mrm.26647</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2018-01, Vol.79 (1), p.515-528 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1873403806 |
source | MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Adipose Tissue - diagnostic imaging Algorithms Ankle Ankle - diagnostic imaging Brain - diagnostic imaging Cluster Analysis Clustering Computer Simulation Data processing Healthy Volunteers Humans Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted In vivo methods and tests Knee Knee - diagnostic imaging local polynomial surface fitting Magnetic Resonance Imaging Models, Statistical Noise Normal Distribution Phase transitions Phase unwrapping Phasors pixel clustering Pixels Signal-To-Noise Ratio Simulation thresholding Water water–fat separation |
title | A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20phase%E2%80%90unwrapping%20method%20based%20on%20pixel%20clustering%20and%20local%20surface%20fitting%20with%20application%20to%20Dixon%20water%E2%80%93fat%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Cheng,%20Junying&rft.date=2018-01&rft.volume=79&rft.issue=1&rft.spage=515&rft.epage=528&rft.pages=515-528&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.26647&rft_dat=%3Cproquest_cross%3E1975953880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975953880&rft_id=info:pmid/28247430&rfr_iscdi=true |