A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI

Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2018-01, Vol.79 (1), p.515-528
Hauptverfasser: Cheng, Junying, Mei, Yingjie, Liu, Biaoshui, Guan, Jijing, Liu, Xiaoyun, Wu, Ed X., Feng, Qianjin, Chen, Wufan, Feng, Yanqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 1
container_start_page 515
container_title Magnetic resonance in medicine
container_volume 79
creator Cheng, Junying
Mei, Yingjie
Liu, Biaoshui
Guan, Jijing
Liu, Xiaoyun
Wu, Ed X.
Feng, Qianjin
Chen, Wufan
Feng, Yanqiu
description Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE). Results In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%. Conclusions The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
doi_str_mv 10.1002/mrm.26647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1873403806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975953880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4Mo9lpd-AIScFMX0-bfTJJlqa0WeikUXYfczBlvysxkTDLedtU-guAb9knM9VYXBcniBM53Pn7wQ-gtJYeUEHY0xOGQNY2Qz9CC1oxVrNbiOVoQKUjFqRZ76FVK14QQraV4ifaYYkIKThbo7hiP4Qf0eFrbBA_3P-dxE-00-fEbHiCvQ4tXZdHiMOLJ3xTQ9XPKELeAHVvcB2d7nObYWQe48zlvNxuf17hoeu9s9uU2B_zR35TPxpbjh_tfnc14eXX-Gr3obJ_gzePcR1_PTr-cfK4uLj-dnxxfVI4rJStOlHRUNASEbNoVrASAA-VkzTslGRekLY8QwUsMTp3WVnJSM-06oIoTvo8Odt4phu8zpGwGnxz0vR0hzMlQJYuEK9IU9P0T9DrMcSzpDNWy1nVJtBV-2FEuhpQidGaKfrDx1lBitq2Y0or500ph3z0a59UA7T_ybw0FONoBG9_D7f9NZnm13Cl_A-PXmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975953880</pqid></control><display><type>article</type><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</creator><creatorcontrib>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</creatorcontrib><description>Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE). Results In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%. Conclusions The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26647</identifier><identifier>PMID: 28247430</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adipose Tissue - diagnostic imaging ; Algorithms ; Ankle ; Ankle - diagnostic imaging ; Brain - diagnostic imaging ; Cluster Analysis ; Clustering ; Computer Simulation ; Data processing ; Healthy Volunteers ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; In vivo methods and tests ; Knee ; Knee - diagnostic imaging ; local polynomial surface fitting ; Magnetic Resonance Imaging ; Models, Statistical ; Noise ; Normal Distribution ; Phase transitions ; Phase unwrapping ; Phasors ; pixel clustering ; Pixels ; Signal-To-Noise Ratio ; Simulation ; thresholding ; Water ; water–fat separation</subject><ispartof>Magnetic resonance in medicine, 2018-01, Vol.79 (1), p.515-528</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</citedby><cites>FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.26647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.26647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Junying</creatorcontrib><creatorcontrib>Mei, Yingjie</creatorcontrib><creatorcontrib>Liu, Biaoshui</creatorcontrib><creatorcontrib>Guan, Jijing</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><creatorcontrib>Feng, Yanqiu</creatorcontrib><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE). Results In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%. Conclusions The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Adipose Tissue - diagnostic imaging</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Ankle - diagnostic imaging</subject><subject>Brain - diagnostic imaging</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>In vivo methods and tests</subject><subject>Knee</subject><subject>Knee - diagnostic imaging</subject><subject>local polynomial surface fitting</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>Noise</subject><subject>Normal Distribution</subject><subject>Phase transitions</subject><subject>Phase unwrapping</subject><subject>Phasors</subject><subject>pixel clustering</subject><subject>Pixels</subject><subject>Signal-To-Noise Ratio</subject><subject>Simulation</subject><subject>thresholding</subject><subject>Water</subject><subject>water–fat separation</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUh4Mo9lpd-AIScFMX0-bfTJJlqa0WeikUXYfczBlvysxkTDLedtU-guAb9knM9VYXBcniBM53Pn7wQ-gtJYeUEHY0xOGQNY2Qz9CC1oxVrNbiOVoQKUjFqRZ76FVK14QQraV4ifaYYkIKThbo7hiP4Qf0eFrbBA_3P-dxE-00-fEbHiCvQ4tXZdHiMOLJ3xTQ9XPKELeAHVvcB2d7nObYWQe48zlvNxuf17hoeu9s9uU2B_zR35TPxpbjh_tfnc14eXX-Gr3obJ_gzePcR1_PTr-cfK4uLj-dnxxfVI4rJStOlHRUNASEbNoVrASAA-VkzTslGRekLY8QwUsMTp3WVnJSM-06oIoTvo8Odt4phu8zpGwGnxz0vR0hzMlQJYuEK9IU9P0T9DrMcSzpDNWy1nVJtBV-2FEuhpQidGaKfrDx1lBitq2Y0or500ph3z0a59UA7T_ybw0FONoBG9_D7f9NZnm13Cl_A-PXmNA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Cheng, Junying</creator><creator>Mei, Yingjie</creator><creator>Liu, Biaoshui</creator><creator>Guan, Jijing</creator><creator>Liu, Xiaoyun</creator><creator>Wu, Ed X.</creator><creator>Feng, Qianjin</creator><creator>Chen, Wufan</creator><creator>Feng, Yanqiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</title><author>Cheng, Junying ; Mei, Yingjie ; Liu, Biaoshui ; Guan, Jijing ; Liu, Xiaoyun ; Wu, Ed X. ; Feng, Qianjin ; Chen, Wufan ; Feng, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-3087c1460e476dbeb4eece8c753f872340d0d00043fac31c99a730529cfe18303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adipose Tissue - diagnostic imaging</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Ankle - diagnostic imaging</topic><topic>Brain - diagnostic imaging</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>In vivo methods and tests</topic><topic>Knee</topic><topic>Knee - diagnostic imaging</topic><topic>local polynomial surface fitting</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>Noise</topic><topic>Normal Distribution</topic><topic>Phase transitions</topic><topic>Phase unwrapping</topic><topic>Phasors</topic><topic>pixel clustering</topic><topic>Pixels</topic><topic>Signal-To-Noise Ratio</topic><topic>Simulation</topic><topic>thresholding</topic><topic>Water</topic><topic>water–fat separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Junying</creatorcontrib><creatorcontrib>Mei, Yingjie</creatorcontrib><creatorcontrib>Liu, Biaoshui</creatorcontrib><creatorcontrib>Guan, Jijing</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><creatorcontrib>Feng, Yanqiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Junying</au><au>Mei, Yingjie</au><au>Liu, Biaoshui</au><au>Guan, Jijing</au><au>Liu, Xiaoyun</au><au>Wu, Ed X.</au><au>Feng, Qianjin</au><au>Chen, Wufan</au><au>Feng, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2018-01</date><risdate>2018</risdate><volume>79</volume><issue>1</issue><spage>515</spage><epage>528</epage><pages>515-528</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To develop and evaluate a novel 2D phase‐unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. Theory and Methods The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase‐unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy‐to‐unwrap blocks and difficult‐to‐unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual‐pixel phase unwrapping by a region‐growing surface‐fitting method. The CLOSE method was evaluated on simulation and in vivo water–fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE). Results In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal‐to‐noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water–fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%. Conclusions The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med 79:515–528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28247430</pmid><doi>10.1002/mrm.26647</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2018-01, Vol.79 (1), p.515-528
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1873403806
source MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Adipose Tissue - diagnostic imaging
Algorithms
Ankle
Ankle - diagnostic imaging
Brain - diagnostic imaging
Cluster Analysis
Clustering
Computer Simulation
Data processing
Healthy Volunteers
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
In vivo methods and tests
Knee
Knee - diagnostic imaging
local polynomial surface fitting
Magnetic Resonance Imaging
Models, Statistical
Noise
Normal Distribution
Phase transitions
Phase unwrapping
Phasors
pixel clustering
Pixels
Signal-To-Noise Ratio
Simulation
thresholding
Water
water–fat separation
title A novel phase‐unwrapping method based on pixel clustering and local surface fitting with application to Dixon water–fat MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20phase%E2%80%90unwrapping%20method%20based%20on%20pixel%20clustering%20and%20local%20surface%20fitting%20with%20application%20to%20Dixon%20water%E2%80%93fat%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Cheng,%20Junying&rft.date=2018-01&rft.volume=79&rft.issue=1&rft.spage=515&rft.epage=528&rft.pages=515-528&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.26647&rft_dat=%3Cproquest_cross%3E1975953880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975953880&rft_id=info:pmid/28247430&rfr_iscdi=true