Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage

In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-06, Vol.214 (4), p.1712-1721
Hauptverfasser: Vu, Giang T. H., Cao, Hieu X., Reiss, Bernd, Schubert, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1721
container_issue 4
container_start_page 1712
container_title The New phytologist
container_volume 214
creator Vu, Giang T. H.
Cao, Hieu X.
Reiss, Bernd
Schubert, Ingo
description In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.
doi_str_mv 10.1111/nph.14490
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872888625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90010405</jstor_id><sourcerecordid>90010405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-1f98d2361003ee96b4f67ff73efe4f1904724792f8e3c1f9fb25c353b9a93cb13</originalsourceid><addsrcrecordid>eNp10E1PFTEUBuDGaOSCLvwBmiZucDHQr-m0SwIoJgRcaOJu0s6cQi9z27HthNx_b-ECCxPP5mye8-bkRegDJUe0znGYb4-oEJq8QisqpG4U5d1rtCKEqUYK-XsP7ee8JoToVrK3aI8pJloi2xUaz2CC4mNorDcZ-4DPrk7wGBc7QZNLMmHENoG5wwlm4xMevXOQIBRvpmmLhxhK8nYpkHGJeJ5MKPgGQtwAzrfJhztzA-_QG2emDO-f9gH69fX85-lFc3n97fvpyWUziE6ShjqtRsYlJYQDaGmFk51zHQcHwlFNRMdEp5lTwIeKnWXtwFtutdF8sJQfoMNd7pzinwVy6Tc-DzDVpyAuuaeqY0opydpKP_9D13FJoX5XlZaMad4-qC87NaSYcwLXz8lvTNr2lPQP1fe1-v6x-mo_PSUudgPji3zuuoLjHbj3E2z_n9Rf_bh4jvy4u1jnEtPLhSaEEkFa_hfcQZbl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896229355</pqid></control><display><type>article</type><title>Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vu, Giang T. H. ; Cao, Hieu X. ; Reiss, Bernd ; Schubert, Ingo</creator><creatorcontrib>Vu, Giang T. H. ; Cao, Hieu X. ; Reiss, Bernd ; Schubert, Ingo</creatorcontrib><description>In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14490</identifier><identifier>PMID: 28245065</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Arabidopsis - genetics ; Barley ; Biological evolution ; Capsella - genetics ; Cells ; Copying ; Deletion ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair ; DNA Repair - physiology ; double‐strand break (DSB) repair ; Gene sequencing ; Genetic recombination ; genome shrinkage ; Genome Size ; genome size evolution ; Genome, Plant ; Genomes ; Genomic instability ; Hordeum - genetics ; Instability ; Mutation ; Net losses ; nonhomologous end joining (NHEJ) ; Nucleotide sequence ; Repair ; Sequence Deletion ; Sequencing ; Shrinkage ; single strand annealing (SSA) ; Spectra ; Stability</subject><ispartof>The New phytologist, 2017-06, Vol.214 (4), p.1712-1721</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-1f98d2361003ee96b4f67ff73efe4f1904724792f8e3c1f9fb25c353b9a93cb13</citedby><cites>FETCH-LOGICAL-c4760-1f98d2361003ee96b4f67ff73efe4f1904724792f8e3c1f9fb25c353b9a93cb13</cites><orcidid>0000-0002-2521-4000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90010405$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90010405$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28245065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Giang T. H.</creatorcontrib><creatorcontrib>Cao, Hieu X.</creatorcontrib><creatorcontrib>Reiss, Bernd</creatorcontrib><creatorcontrib>Schubert, Ingo</creatorcontrib><title>Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.</description><subject>Arabidopsis - genetics</subject><subject>Barley</subject><subject>Biological evolution</subject><subject>Capsella - genetics</subject><subject>Cells</subject><subject>Copying</subject><subject>Deletion</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA Repair - physiology</subject><subject>double‐strand break (DSB) repair</subject><subject>Gene sequencing</subject><subject>Genetic recombination</subject><subject>genome shrinkage</subject><subject>Genome Size</subject><subject>genome size evolution</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Hordeum - genetics</subject><subject>Instability</subject><subject>Mutation</subject><subject>Net losses</subject><subject>nonhomologous end joining (NHEJ)</subject><subject>Nucleotide sequence</subject><subject>Repair</subject><subject>Sequence Deletion</subject><subject>Sequencing</subject><subject>Shrinkage</subject><subject>single strand annealing (SSA)</subject><subject>Spectra</subject><subject>Stability</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1PFTEUBuDGaOSCLvwBmiZucDHQr-m0SwIoJgRcaOJu0s6cQi9z27HthNx_b-ECCxPP5mye8-bkRegDJUe0znGYb4-oEJq8QisqpG4U5d1rtCKEqUYK-XsP7ee8JoToVrK3aI8pJloi2xUaz2CC4mNorDcZ-4DPrk7wGBc7QZNLMmHENoG5wwlm4xMevXOQIBRvpmmLhxhK8nYpkHGJeJ5MKPgGQtwAzrfJhztzA-_QG2emDO-f9gH69fX85-lFc3n97fvpyWUziE6ShjqtRsYlJYQDaGmFk51zHQcHwlFNRMdEp5lTwIeKnWXtwFtutdF8sJQfoMNd7pzinwVy6Tc-DzDVpyAuuaeqY0opydpKP_9D13FJoX5XlZaMad4-qC87NaSYcwLXz8lvTNr2lPQP1fe1-v6x-mo_PSUudgPji3zuuoLjHbj3E2z_n9Rf_bh4jvy4u1jnEtPLhSaEEkFa_hfcQZbl</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Vu, Giang T. H.</creator><creator>Cao, Hieu X.</creator><creator>Reiss, Bernd</creator><creator>Schubert, Ingo</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2521-4000</orcidid></search><sort><creationdate>201706</creationdate><title>Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage</title><author>Vu, Giang T. H. ; Cao, Hieu X. ; Reiss, Bernd ; Schubert, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-1f98d2361003ee96b4f67ff73efe4f1904724792f8e3c1f9fb25c353b9a93cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arabidopsis - genetics</topic><topic>Barley</topic><topic>Biological evolution</topic><topic>Capsella - genetics</topic><topic>Cells</topic><topic>Copying</topic><topic>Deletion</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA Repair - physiology</topic><topic>double‐strand break (DSB) repair</topic><topic>Gene sequencing</topic><topic>Genetic recombination</topic><topic>genome shrinkage</topic><topic>Genome Size</topic><topic>genome size evolution</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Hordeum - genetics</topic><topic>Instability</topic><topic>Mutation</topic><topic>Net losses</topic><topic>nonhomologous end joining (NHEJ)</topic><topic>Nucleotide sequence</topic><topic>Repair</topic><topic>Sequence Deletion</topic><topic>Sequencing</topic><topic>Shrinkage</topic><topic>single strand annealing (SSA)</topic><topic>Spectra</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Giang T. H.</creatorcontrib><creatorcontrib>Cao, Hieu X.</creatorcontrib><creatorcontrib>Reiss, Bernd</creatorcontrib><creatorcontrib>Schubert, Ingo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Giang T. H.</au><au>Cao, Hieu X.</au><au>Reiss, Bernd</au><au>Schubert, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>214</volume><issue>4</issue><spage>1712</spage><epage>1721</epage><pages>1712-1721</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28245065</pmid><doi>10.1111/nph.14490</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2521-4000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-06, Vol.214 (4), p.1712-1721
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1872888625
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis - genetics
Barley
Biological evolution
Capsella - genetics
Cells
Copying
Deletion
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA End-Joining Repair
DNA Repair - physiology
double‐strand break (DSB) repair
Gene sequencing
Genetic recombination
genome shrinkage
Genome Size
genome size evolution
Genome, Plant
Genomes
Genomic instability
Hordeum - genetics
Instability
Mutation
Net losses
nonhomologous end joining (NHEJ)
Nucleotide sequence
Repair
Sequence Deletion
Sequencing
Shrinkage
single strand annealing (SSA)
Spectra
Stability
title Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion-bias%20in%20DNA%20double-strand%20break%20repair%20differentially%20contributes%20to%20plant%20genome%20shrinkage&rft.jtitle=The%20New%20phytologist&rft.au=Vu,%20Giang%20T.%20H.&rft.date=2017-06&rft.volume=214&rft.issue=4&rft.spage=1712&rft.epage=1721&rft.pages=1712-1721&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14490&rft_dat=%3Cjstor_proqu%3E90010405%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896229355&rft_id=info:pmid/28245065&rft_jstor_id=90010405&rfr_iscdi=true