Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum
Current group-average analysis suggests quantitative but not qualitative cognitive differences between schizophrenia (SZ) and bipolar disorder (BD). There is increasing recognition that cognitive within-group heterogeneity exists in both disorders, but it remains unclear as to whether between-group...
Gespeichert in:
Veröffentlicht in: | Psychological medicine 2017-07, Vol.47 (10), p.1848-1864 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1864 |
---|---|
container_issue | 10 |
container_start_page | 1848 |
container_title | Psychological medicine |
container_volume | 47 |
creator | Van Rheenen, T. E. Lewandowski, K. E. Tan, E. J. Ospina, L. H. Ongur, D. Neill, E. Gurvich, C. Pantelis, C. Malhotra, A. K. Rossell, S. L. Burdick, K. E. |
description | Current group-average analysis suggests quantitative but not qualitative cognitive differences between schizophrenia (SZ) and bipolar disorder (BD). There is increasing recognition that cognitive within-group heterogeneity exists in both disorders, but it remains unclear as to whether between-group comparisons of performance in cognitive subgroups emerging from within each of these nosological categories uphold group-average findings. We addressed this by identifying cognitive subgroups in large samples of SZ and BD patients independently, and comparing their cognitive profiles. The utility of a cross-diagnostic clustering approach to understanding cognitive heterogeneity in these patients was also explored.
Hierarchical clustering analyses were conducted using cognitive data from 1541 participants (SZ n = 564, BD n = 402, healthy control n = 575).
Three qualitatively and quantitatively similar clusters emerged within each clinical group: a severely impaired cluster, a mild-moderately impaired cluster and a relatively intact cognitive cluster. A cross-diagnostic clustering solution also resulted in three subgroups and was superior in reducing cognitive heterogeneity compared with disorder clustering independently.
Quantitative SZ-BD cognitive differences commonly seen using group averages did not hold when cognitive heterogeneity was factored into our sample. Members of each corresponding subgroup, irrespective of diagnosis, might be manifesting the outcome of differences in shared cognitive risk factors. |
doi_str_mv | 10.1017/S0033291717000307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872877827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291717000307</cupid><sourcerecordid>1872877827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-62426391d84930e67110bb28711311856a1ed39a200a6de3360ae6cd1e8c91883</originalsourceid><addsrcrecordid>eNp1kM1KxDAQx4Moun48gBcpePFSzSS1SY6y-AULHlQ8ljSd3Ua2TU1aYT35Dr6hT2IWVxHF0wwzv_kl_AnZB3oMFMTJLaWcMwUCBI0tFWtkBFmuUqmEXCej5Tpd7rfIdgiPlAKHjG2SLSZZBlLBiDyMa-216dHbF9vOEuNmre3tMyY1xqGbYYu2XySuTfoak2Bq--K62mNr9fvrW2k7N9c-qWxwvkKfhA5N74dml2xM9Tzg3qrukPuL87vxVTq5ubwen01Sk0nWpznLWM4VVDJTnGIuAGhZMhkrB5CnuQasuNKMUp1XyHlONeamApRGgZR8hxx9ejvvngYMfdHYYHA-1y26IRQgRbQJyURED3-hj27wbfxdAQqACaYYjRR8Usa7EDxOi87bRvtFAbRYpl78ST3eHKzMQ9lg9X3xFXME-Eqqm9LbaoY_3v5X-wFedYwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911272920</pqid></control><display><type>article</type><title>Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Van Rheenen, T. E. ; Lewandowski, K. E. ; Tan, E. J. ; Ospina, L. H. ; Ongur, D. ; Neill, E. ; Gurvich, C. ; Pantelis, C. ; Malhotra, A. K. ; Rossell, S. L. ; Burdick, K. E.</creator><creatorcontrib>Van Rheenen, T. E. ; Lewandowski, K. E. ; Tan, E. J. ; Ospina, L. H. ; Ongur, D. ; Neill, E. ; Gurvich, C. ; Pantelis, C. ; Malhotra, A. K. ; Rossell, S. L. ; Burdick, K. E.</creatorcontrib><description>Current group-average analysis suggests quantitative but not qualitative cognitive differences between schizophrenia (SZ) and bipolar disorder (BD). There is increasing recognition that cognitive within-group heterogeneity exists in both disorders, but it remains unclear as to whether between-group comparisons of performance in cognitive subgroups emerging from within each of these nosological categories uphold group-average findings. We addressed this by identifying cognitive subgroups in large samples of SZ and BD patients independently, and comparing their cognitive profiles. The utility of a cross-diagnostic clustering approach to understanding cognitive heterogeneity in these patients was also explored.
Hierarchical clustering analyses were conducted using cognitive data from 1541 participants (SZ n = 564, BD n = 402, healthy control n = 575).
Three qualitatively and quantitatively similar clusters emerged within each clinical group: a severely impaired cluster, a mild-moderately impaired cluster and a relatively intact cognitive cluster. A cross-diagnostic clustering solution also resulted in three subgroups and was superior in reducing cognitive heterogeneity compared with disorder clustering independently.
Quantitative SZ-BD cognitive differences commonly seen using group averages did not hold when cognitive heterogeneity was factored into our sample. Members of each corresponding subgroup, irrespective of diagnosis, might be manifesting the outcome of differences in shared cognitive risk factors.</description><identifier>ISSN: 0033-2917</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291717000307</identifier><identifier>PMID: 28241891</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adult ; Averages ; Bipolar disorder ; Bipolar Disorder - classification ; Bipolar Disorder - complications ; Bipolar Disorder - physiopathology ; Cluster analysis ; Clustering ; Cognition & reasoning ; Cognitive ability ; Cognitive Dysfunction - classification ; Cognitive Dysfunction - etiology ; Cognitive Dysfunction - physiopathology ; Female ; Group dynamics ; Heterogeneity ; Hospitals ; Humans ; Male ; Medical diagnosis ; Mental disorders ; Middle Aged ; Original Articles ; Psychiatry ; Psychosis ; Research centers ; Risk factors ; Schizophrenia ; Schizophrenia - classification ; Schizophrenia - complications ; Schizophrenia - physiopathology ; Young Adult</subject><ispartof>Psychological medicine, 2017-07, Vol.47 (10), p.1848-1864</ispartof><rights>Copyright © Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-62426391d84930e67110bb28711311856a1ed39a200a6de3360ae6cd1e8c91883</citedby><cites>FETCH-LOGICAL-c482t-62426391d84930e67110bb28711311856a1ed39a200a6de3360ae6cd1e8c91883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291717000307/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,12825,27901,27902,30976,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28241891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Rheenen, T. E.</creatorcontrib><creatorcontrib>Lewandowski, K. E.</creatorcontrib><creatorcontrib>Tan, E. J.</creatorcontrib><creatorcontrib>Ospina, L. H.</creatorcontrib><creatorcontrib>Ongur, D.</creatorcontrib><creatorcontrib>Neill, E.</creatorcontrib><creatorcontrib>Gurvich, C.</creatorcontrib><creatorcontrib>Pantelis, C.</creatorcontrib><creatorcontrib>Malhotra, A. K.</creatorcontrib><creatorcontrib>Rossell, S. L.</creatorcontrib><creatorcontrib>Burdick, K. E.</creatorcontrib><title>Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>Current group-average analysis suggests quantitative but not qualitative cognitive differences between schizophrenia (SZ) and bipolar disorder (BD). There is increasing recognition that cognitive within-group heterogeneity exists in both disorders, but it remains unclear as to whether between-group comparisons of performance in cognitive subgroups emerging from within each of these nosological categories uphold group-average findings. We addressed this by identifying cognitive subgroups in large samples of SZ and BD patients independently, and comparing their cognitive profiles. The utility of a cross-diagnostic clustering approach to understanding cognitive heterogeneity in these patients was also explored.
Hierarchical clustering analyses were conducted using cognitive data from 1541 participants (SZ n = 564, BD n = 402, healthy control n = 575).
Three qualitatively and quantitatively similar clusters emerged within each clinical group: a severely impaired cluster, a mild-moderately impaired cluster and a relatively intact cognitive cluster. A cross-diagnostic clustering solution also resulted in three subgroups and was superior in reducing cognitive heterogeneity compared with disorder clustering independently.
Quantitative SZ-BD cognitive differences commonly seen using group averages did not hold when cognitive heterogeneity was factored into our sample. Members of each corresponding subgroup, irrespective of diagnosis, might be manifesting the outcome of differences in shared cognitive risk factors.</description><subject>Adult</subject><subject>Averages</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - classification</subject><subject>Bipolar Disorder - complications</subject><subject>Bipolar Disorder - physiopathology</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - classification</subject><subject>Cognitive Dysfunction - etiology</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Female</subject><subject>Group dynamics</subject><subject>Heterogeneity</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Mental disorders</subject><subject>Middle Aged</subject><subject>Original Articles</subject><subject>Psychiatry</subject><subject>Psychosis</subject><subject>Research centers</subject><subject>Risk factors</subject><subject>Schizophrenia</subject><subject>Schizophrenia - classification</subject><subject>Schizophrenia - complications</subject><subject>Schizophrenia - physiopathology</subject><subject>Young Adult</subject><issn>0033-2917</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KxDAQx4Moun48gBcpePFSzSS1SY6y-AULHlQ8ljSd3Ua2TU1aYT35Dr6hT2IWVxHF0wwzv_kl_AnZB3oMFMTJLaWcMwUCBI0tFWtkBFmuUqmEXCej5Tpd7rfIdgiPlAKHjG2SLSZZBlLBiDyMa-216dHbF9vOEuNmre3tMyY1xqGbYYu2XySuTfoak2Bq--K62mNr9fvrW2k7N9c-qWxwvkKfhA5N74dml2xM9Tzg3qrukPuL87vxVTq5ubwen01Sk0nWpznLWM4VVDJTnGIuAGhZMhkrB5CnuQasuNKMUp1XyHlONeamApRGgZR8hxx9ejvvngYMfdHYYHA-1y26IRQgRbQJyURED3-hj27wbfxdAQqACaYYjRR8Usa7EDxOi87bRvtFAbRYpl78ST3eHKzMQ9lg9X3xFXME-Eqqm9LbaoY_3v5X-wFedYwo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Van Rheenen, T. E.</creator><creator>Lewandowski, K. E.</creator><creator>Tan, E. J.</creator><creator>Ospina, L. H.</creator><creator>Ongur, D.</creator><creator>Neill, E.</creator><creator>Gurvich, C.</creator><creator>Pantelis, C.</creator><creator>Malhotra, A. K.</creator><creator>Rossell, S. L.</creator><creator>Burdick, K. E.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum</title><author>Van Rheenen, T. E. ; Lewandowski, K. E. ; Tan, E. J. ; Ospina, L. H. ; Ongur, D. ; Neill, E. ; Gurvich, C. ; Pantelis, C. ; Malhotra, A. K. ; Rossell, S. L. ; Burdick, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-62426391d84930e67110bb28711311856a1ed39a200a6de3360ae6cd1e8c91883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Averages</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - classification</topic><topic>Bipolar Disorder - complications</topic><topic>Bipolar Disorder - physiopathology</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - classification</topic><topic>Cognitive Dysfunction - etiology</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Female</topic><topic>Group dynamics</topic><topic>Heterogeneity</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Mental disorders</topic><topic>Middle Aged</topic><topic>Original Articles</topic><topic>Psychiatry</topic><topic>Psychosis</topic><topic>Research centers</topic><topic>Risk factors</topic><topic>Schizophrenia</topic><topic>Schizophrenia - classification</topic><topic>Schizophrenia - complications</topic><topic>Schizophrenia - physiopathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Rheenen, T. E.</creatorcontrib><creatorcontrib>Lewandowski, K. E.</creatorcontrib><creatorcontrib>Tan, E. J.</creatorcontrib><creatorcontrib>Ospina, L. H.</creatorcontrib><creatorcontrib>Ongur, D.</creatorcontrib><creatorcontrib>Neill, E.</creatorcontrib><creatorcontrib>Gurvich, C.</creatorcontrib><creatorcontrib>Pantelis, C.</creatorcontrib><creatorcontrib>Malhotra, A. K.</creatorcontrib><creatorcontrib>Rossell, S. L.</creatorcontrib><creatorcontrib>Burdick, K. E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Rheenen, T. E.</au><au>Lewandowski, K. E.</au><au>Tan, E. J.</au><au>Ospina, L. H.</au><au>Ongur, D.</au><au>Neill, E.</au><au>Gurvich, C.</au><au>Pantelis, C.</au><au>Malhotra, A. K.</au><au>Rossell, S. L.</au><au>Burdick, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>1848</spage><epage>1864</epage><pages>1848-1864</pages><issn>0033-2917</issn><eissn>1469-8978</eissn><abstract>Current group-average analysis suggests quantitative but not qualitative cognitive differences between schizophrenia (SZ) and bipolar disorder (BD). There is increasing recognition that cognitive within-group heterogeneity exists in both disorders, but it remains unclear as to whether between-group comparisons of performance in cognitive subgroups emerging from within each of these nosological categories uphold group-average findings. We addressed this by identifying cognitive subgroups in large samples of SZ and BD patients independently, and comparing their cognitive profiles. The utility of a cross-diagnostic clustering approach to understanding cognitive heterogeneity in these patients was also explored.
Hierarchical clustering analyses were conducted using cognitive data from 1541 participants (SZ n = 564, BD n = 402, healthy control n = 575).
Three qualitatively and quantitatively similar clusters emerged within each clinical group: a severely impaired cluster, a mild-moderately impaired cluster and a relatively intact cognitive cluster. A cross-diagnostic clustering solution also resulted in three subgroups and was superior in reducing cognitive heterogeneity compared with disorder clustering independently.
Quantitative SZ-BD cognitive differences commonly seen using group averages did not hold when cognitive heterogeneity was factored into our sample. Members of each corresponding subgroup, irrespective of diagnosis, might be manifesting the outcome of differences in shared cognitive risk factors.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>28241891</pmid><doi>10.1017/S0033291717000307</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2917 |
ispartof | Psychological medicine, 2017-07, Vol.47 (10), p.1848-1864 |
issn | 0033-2917 1469-8978 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872877827 |
source | Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Cambridge University Press Journals Complete |
subjects | Adult Averages Bipolar disorder Bipolar Disorder - classification Bipolar Disorder - complications Bipolar Disorder - physiopathology Cluster analysis Clustering Cognition & reasoning Cognitive ability Cognitive Dysfunction - classification Cognitive Dysfunction - etiology Cognitive Dysfunction - physiopathology Female Group dynamics Heterogeneity Hospitals Humans Male Medical diagnosis Mental disorders Middle Aged Original Articles Psychiatry Psychosis Research centers Risk factors Schizophrenia Schizophrenia - classification Schizophrenia - complications Schizophrenia - physiopathology Young Adult |
title | Characterizing cognitive heterogeneity on the schizophrenia–bipolar disorder spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20cognitive%20heterogeneity%20on%20the%20schizophrenia%E2%80%93bipolar%20disorder%20spectrum&rft.jtitle=Psychological%20medicine&rft.au=Van%20Rheenen,%20T.%20E.&rft.date=2017-07-01&rft.volume=47&rft.issue=10&rft.spage=1848&rft.epage=1864&rft.pages=1848-1864&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291717000307&rft_dat=%3Cproquest_cross%3E1872877827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911272920&rft_id=info:pmid/28241891&rft_cupid=10_1017_S0033291717000307&rfr_iscdi=true |