Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition

The Diels–Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels–Alder mechanism....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-03, Vol.139 (11), p.3942-3945
Hauptverfasser: Medvedev, Michael G, Zeifman, Alexey A, Novikov, Fedor N, Bushmarinov, Ivan S, Stroganov, Oleg V, Titov, Ilya Yu, Chilov, Ghermes G, Svitanko, Igor V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3945
container_issue 11
container_start_page 3942
container_title Journal of the American Chemical Society
container_volume 139
creator Medvedev, Michael G
Zeifman, Alexey A
Novikov, Fedor N
Bushmarinov, Ivan S
Stroganov, Oleg V
Titov, Ilya Yu
Chilov, Ghermes G
Svitanko, Igor V
description The Diels–Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels–Alder mechanism. In this study, we focus on the [4 + 2] cycloaddition step in the biosynthesis of spinosyn A, a reaction catalyzed by SpnF enzyme, one of the most promising “true Diels–Alderase” candidates. The four currently proposed mechanisms (including the Diels–Alder one) for this reaction in water (as a first-order approximation of the enzymatic reaction) are evaluated by an exhaustive quantum mechanical search for possible transition states (728 were found in total). We find that the line between the recently proposed bis-pericyclic [J. Am. Chem. Soc. 2016, 138 (11), 3631] and Diels–Alder routes is blurred, and favorable transition states of both types may coexist. Application of the Curtin–Hammett principle, however, reveals that the bis-pericyclic mechanism accounts for ∼83% of the reaction flow in water, while the classical Diels–Alder mechanism contributes only ∼17%. The current findings provide a route for modeling this reaction inside the SpnF active site and inferring the catalytic architecture of possible Diels–Alderases.
doi_str_mv 10.1021/jacs.6b13243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872873194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872873194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-965b84fb59f23be6efd204e33886224d7b0e3db994a95c406ccaa97e16f8c9553</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOMDKT4K44zVoECUiUoH3NkOw5y5cTFToYw8R_4h_wSUrXAwnQ66bn37h4AThGcIojR5UqoMGUSEUzJHhijBMM4QZjtgzGEEMcpZ2QEjkJYDS3FHB2CEeaYQp7yMVguO9G0pupN8xo9uBCMtDp6dF2rQ1Q5Hz2tm3mci1bY_l2X0dz5Wtjoymgbvj4-Z7bUPsp7ZZ0oS9Ma1xyDg0rYoE92dQJe5tfP-W28uL-5y2eLWAyXtnHGEslpJZOswkRqpqsSQ6oJ4ZxhTMtUQk1KmWVUZImikCklRJZqxCqusiQhE3C-zV1799bp0Ba1CUpbKxrtulAgnmKeEpTRAb3YosoPH3pdFWtvauH7AsFiI7HYSCx2Egf8bJfcyVqXv_CPtb_Vm6mV63wzPPp_1jfQpHuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872873194</pqid></control><display><type>article</type><title>Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition</title><source>ACS Publications</source><creator>Medvedev, Michael G ; Zeifman, Alexey A ; Novikov, Fedor N ; Bushmarinov, Ivan S ; Stroganov, Oleg V ; Titov, Ilya Yu ; Chilov, Ghermes G ; Svitanko, Igor V</creator><creatorcontrib>Medvedev, Michael G ; Zeifman, Alexey A ; Novikov, Fedor N ; Bushmarinov, Ivan S ; Stroganov, Oleg V ; Titov, Ilya Yu ; Chilov, Ghermes G ; Svitanko, Igor V</creatorcontrib><description>The Diels–Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels–Alder mechanism. In this study, we focus on the [4 + 2] cycloaddition step in the biosynthesis of spinosyn A, a reaction catalyzed by SpnF enzyme, one of the most promising “true Diels–Alderase” candidates. The four currently proposed mechanisms (including the Diels–Alder one) for this reaction in water (as a first-order approximation of the enzymatic reaction) are evaluated by an exhaustive quantum mechanical search for possible transition states (728 were found in total). We find that the line between the recently proposed bis-pericyclic [J. Am. Chem. Soc. 2016, 138 (11), 3631] and Diels–Alder routes is blurred, and favorable transition states of both types may coexist. Application of the Curtin–Hammett principle, however, reveals that the bis-pericyclic mechanism accounts for ∼83% of the reaction flow in water, while the classical Diels–Alder mechanism contributes only ∼17%. The current findings provide a route for modeling this reaction inside the SpnF active site and inferring the catalytic architecture of possible Diels–Alderases.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b13243</identifier><identifier>PMID: 28240878</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2017-03, Vol.139 (11), p.3942-3945</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-965b84fb59f23be6efd204e33886224d7b0e3db994a95c406ccaa97e16f8c9553</citedby><cites>FETCH-LOGICAL-a324t-965b84fb59f23be6efd204e33886224d7b0e3db994a95c406ccaa97e16f8c9553</cites><orcidid>0000-0001-7070-4052 ; 0000-0002-6534-4133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b13243$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b13243$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28240878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medvedev, Michael G</creatorcontrib><creatorcontrib>Zeifman, Alexey A</creatorcontrib><creatorcontrib>Novikov, Fedor N</creatorcontrib><creatorcontrib>Bushmarinov, Ivan S</creatorcontrib><creatorcontrib>Stroganov, Oleg V</creatorcontrib><creatorcontrib>Titov, Ilya Yu</creatorcontrib><creatorcontrib>Chilov, Ghermes G</creatorcontrib><creatorcontrib>Svitanko, Igor V</creatorcontrib><title>Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The Diels–Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels–Alder mechanism. In this study, we focus on the [4 + 2] cycloaddition step in the biosynthesis of spinosyn A, a reaction catalyzed by SpnF enzyme, one of the most promising “true Diels–Alderase” candidates. The four currently proposed mechanisms (including the Diels–Alder one) for this reaction in water (as a first-order approximation of the enzymatic reaction) are evaluated by an exhaustive quantum mechanical search for possible transition states (728 were found in total). We find that the line between the recently proposed bis-pericyclic [J. Am. Chem. Soc. 2016, 138 (11), 3631] and Diels–Alder routes is blurred, and favorable transition states of both types may coexist. Application of the Curtin–Hammett principle, however, reveals that the bis-pericyclic mechanism accounts for ∼83% of the reaction flow in water, while the classical Diels–Alder mechanism contributes only ∼17%. The current findings provide a route for modeling this reaction inside the SpnF active site and inferring the catalytic architecture of possible Diels–Alderases.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOMDKT4K44zVoECUiUoH3NkOw5y5cTFToYw8R_4h_wSUrXAwnQ66bn37h4AThGcIojR5UqoMGUSEUzJHhijBMM4QZjtgzGEEMcpZ2QEjkJYDS3FHB2CEeaYQp7yMVguO9G0pupN8xo9uBCMtDp6dF2rQ1Q5Hz2tm3mci1bY_l2X0dz5Wtjoymgbvj4-Z7bUPsp7ZZ0oS9Ma1xyDg0rYoE92dQJe5tfP-W28uL-5y2eLWAyXtnHGEslpJZOswkRqpqsSQ6oJ4ZxhTMtUQk1KmWVUZImikCklRJZqxCqusiQhE3C-zV1799bp0Ba1CUpbKxrtulAgnmKeEpTRAb3YosoPH3pdFWtvauH7AsFiI7HYSCx2Egf8bJfcyVqXv_CPtb_Vm6mV63wzPPp_1jfQpHuB</recordid><startdate>20170322</startdate><enddate>20170322</enddate><creator>Medvedev, Michael G</creator><creator>Zeifman, Alexey A</creator><creator>Novikov, Fedor N</creator><creator>Bushmarinov, Ivan S</creator><creator>Stroganov, Oleg V</creator><creator>Titov, Ilya Yu</creator><creator>Chilov, Ghermes G</creator><creator>Svitanko, Igor V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7070-4052</orcidid><orcidid>https://orcid.org/0000-0002-6534-4133</orcidid></search><sort><creationdate>20170322</creationdate><title>Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition</title><author>Medvedev, Michael G ; Zeifman, Alexey A ; Novikov, Fedor N ; Bushmarinov, Ivan S ; Stroganov, Oleg V ; Titov, Ilya Yu ; Chilov, Ghermes G ; Svitanko, Igor V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-965b84fb59f23be6efd204e33886224d7b0e3db994a95c406ccaa97e16f8c9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, Michael G</creatorcontrib><creatorcontrib>Zeifman, Alexey A</creatorcontrib><creatorcontrib>Novikov, Fedor N</creatorcontrib><creatorcontrib>Bushmarinov, Ivan S</creatorcontrib><creatorcontrib>Stroganov, Oleg V</creatorcontrib><creatorcontrib>Titov, Ilya Yu</creatorcontrib><creatorcontrib>Chilov, Ghermes G</creatorcontrib><creatorcontrib>Svitanko, Igor V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, Michael G</au><au>Zeifman, Alexey A</au><au>Novikov, Fedor N</au><au>Bushmarinov, Ivan S</au><au>Stroganov, Oleg V</au><au>Titov, Ilya Yu</au><au>Chilov, Ghermes G</au><au>Svitanko, Igor V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-03-22</date><risdate>2017</risdate><volume>139</volume><issue>11</issue><spage>3942</spage><epage>3945</epage><pages>3942-3945</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The Diels–Alder reaction is a cornerstone of modern organic synthesis. Despite this, it remains essentially inaccessible to biosynthetic approaches. Only a few natural enzymes catalyze even a formal [4 + 2] cycloaddition, and it remains uncertain if any of them proceed via the Diels–Alder mechanism. In this study, we focus on the [4 + 2] cycloaddition step in the biosynthesis of spinosyn A, a reaction catalyzed by SpnF enzyme, one of the most promising “true Diels–Alderase” candidates. The four currently proposed mechanisms (including the Diels–Alder one) for this reaction in water (as a first-order approximation of the enzymatic reaction) are evaluated by an exhaustive quantum mechanical search for possible transition states (728 were found in total). We find that the line between the recently proposed bis-pericyclic [J. Am. Chem. Soc. 2016, 138 (11), 3631] and Diels–Alder routes is blurred, and favorable transition states of both types may coexist. Application of the Curtin–Hammett principle, however, reveals that the bis-pericyclic mechanism accounts for ∼83% of the reaction flow in water, while the classical Diels–Alder mechanism contributes only ∼17%. The current findings provide a route for modeling this reaction inside the SpnF active site and inferring the catalytic architecture of possible Diels–Alderases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28240878</pmid><doi>10.1021/jacs.6b13243</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7070-4052</orcidid><orcidid>https://orcid.org/0000-0002-6534-4133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-03, Vol.139 (11), p.3942-3945
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1872873194
source ACS Publications
title Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Possible%20Routes%20for%20SpnF-Catalyzed%20Formal%20Diels%E2%80%93Alder%20Cycloaddition&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Medvedev,%20Michael%20G&rft.date=2017-03-22&rft.volume=139&rft.issue=11&rft.spage=3942&rft.epage=3945&rft.pages=3942-3945&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b13243&rft_dat=%3Cproquest_cross%3E1872873194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872873194&rft_id=info:pmid/28240878&rfr_iscdi=true