Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models
Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated...
Gespeichert in:
Veröffentlicht in: | Digestive diseases and sciences 2017-02, Vol.62 (2), p.396-406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 2 |
container_start_page | 396 |
container_title | Digestive diseases and sciences |
container_volume | 62 |
creator | Ishioka, Mitsuaki Miura, Kouichi Minami, Shinichiro Shimura, Yoichiro Ohnishi, Hirohide |
description | Background
Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.
Aim
We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.
Methods
Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.
Results
Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the
Firmicutes
phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of
Clostridiales
, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium
Parabacteroides goldsteinii
in the phylum
Bacteroidetes
. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.
Conclusions
The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis. |
doi_str_mv | 10.1007/s10620-016-4393-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872833974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712938530</galeid><sourcerecordid>A712938530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</originalsourceid><addsrcrecordid>eNqNkkuLFDEQxxtR3HH1A3iRgBcvvebReR2HYV0XdhB8nEM6XVmzdCdtJw3jtzfDrE8UJIeEqt__T1WqmuY5wRcEY_k6EywobjERbcc0aw8Pmg3hkrWUC_Ww2dREfRMizponOd9hjLUk4nFzRqUmTGuxadx2LLDAgK7WgvbBLakPqVi0S9OccighRWTjgK6naY2A3kOeU8yAQkSXhxmWMEEsdkQfCtiSPsNsSxVltE9rpfZpgDE_bR55O2Z4dn-fN5_eXH7cvW1v3l1d77Y3reNMlRYA9wDUaaF6wSQdQFPPOw9SKyU1dj13TsjOEd73ihExOO691yC8Hpjr2Xnz6uQ7L-nLCrmYKWQH42gj1HIMUZIqxrTs_gPtuGIUK17Rl3-gd2ldYm2kUoJTjqnCP6lbO4IJ0aeyWHc0NVtJqGbV6Uhd_IWqZ4ApuBTBhxr_TUBOgjqYnBfwZq5fbpevhmBz3AFz2gFTR22OO2AOVfPivuC1n2D4ofg-9ArQE5BrKt7C8ktH_3T9Bmu2u-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865250280</pqid></control><display><type>article</type><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</creator><creatorcontrib>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</creatorcontrib><description>Background
Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.
Aim
We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.
Methods
Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.
Results
Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the
Firmicutes
phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of
Clostridiales
, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium
Parabacteroides goldsteinii
in the phylum
Bacteroidetes
. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.
Conclusions
The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</description><identifier>ISSN: 0163-2116</identifier><identifier>EISSN: 1573-2568</identifier><identifier>DOI: 10.1007/s10620-016-4393-x</identifier><identifier>PMID: 27913996</identifier><identifier>CODEN: DDSCDJ</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alanine Transaminase - metabolism ; Amino acids ; Analysis ; Animals ; Bacteria ; Bacteroidetes ; Biochemistry ; Cholesterol - metabolism ; Choline ; Clostridiales ; Diet ; Diet, High-Fat ; Disease Models, Animal ; Fatty Acids, Nonesterified - metabolism ; Female ; Firmicutes ; Gastroenterology ; Gastrointestinal Microbiome ; Hepatology ; Ileum - immunology ; Interleukin-17 - immunology ; Interleukins ; Intestines - immunology ; Intestines - microbiology ; Lactates ; Liver - metabolism ; Liver - pathology ; Male ; Medicine ; Medicine & Public Health ; Methionine ; Metronidazole ; Mice ; Microbiota (Symbiotic organisms) ; Neomycin ; Non-alcoholic Fatty Liver Disease - immunology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - microbiology ; Non-alcoholic Fatty Liver Disease - pathology ; Oncology ; Original Article ; Portal Vein ; Real-Time Polymerase Chain Reaction ; Severity of Illness Index ; Transplant Surgery ; Triglycerides - metabolism</subject><ispartof>Digestive diseases and sciences, 2017-02, Vol.62 (2), p.396-406</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Digestive Diseases and Sciences is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</citedby><cites>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10620-016-4393-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10620-016-4393-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27913996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Miura, Kouichi</creatorcontrib><creatorcontrib>Minami, Shinichiro</creatorcontrib><creatorcontrib>Shimura, Yoichiro</creatorcontrib><creatorcontrib>Ohnishi, Hirohide</creatorcontrib><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><title>Digestive diseases and sciences</title><addtitle>Dig Dis Sci</addtitle><addtitle>Dig Dis Sci</addtitle><description>Background
Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.
Aim
We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.
Methods
Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.
Results
Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the
Firmicutes
phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of
Clostridiales
, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium
Parabacteroides goldsteinii
in the phylum
Bacteroidetes
. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.
Conclusions
The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</description><subject>Alanine Transaminase - metabolism</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteroidetes</subject><subject>Biochemistry</subject><subject>Cholesterol - metabolism</subject><subject>Choline</subject><subject>Clostridiales</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Female</subject><subject>Firmicutes</subject><subject>Gastroenterology</subject><subject>Gastrointestinal Microbiome</subject><subject>Hepatology</subject><subject>Ileum - immunology</subject><subject>Interleukin-17 - immunology</subject><subject>Interleukins</subject><subject>Intestines - immunology</subject><subject>Intestines - microbiology</subject><subject>Lactates</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Methionine</subject><subject>Metronidazole</subject><subject>Mice</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Neomycin</subject><subject>Non-alcoholic Fatty Liver Disease - immunology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - microbiology</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Portal Vein</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Severity of Illness Index</subject><subject>Transplant Surgery</subject><subject>Triglycerides - metabolism</subject><issn>0163-2116</issn><issn>1573-2568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkkuLFDEQxxtR3HH1A3iRgBcvvebReR2HYV0XdhB8nEM6XVmzdCdtJw3jtzfDrE8UJIeEqt__T1WqmuY5wRcEY_k6EywobjERbcc0aw8Pmg3hkrWUC_Ww2dREfRMizponOd9hjLUk4nFzRqUmTGuxadx2LLDAgK7WgvbBLakPqVi0S9OccighRWTjgK6naY2A3kOeU8yAQkSXhxmWMEEsdkQfCtiSPsNsSxVltE9rpfZpgDE_bR55O2Z4dn-fN5_eXH7cvW1v3l1d77Y3reNMlRYA9wDUaaF6wSQdQFPPOw9SKyU1dj13TsjOEd73ihExOO691yC8Hpjr2Xnz6uQ7L-nLCrmYKWQH42gj1HIMUZIqxrTs_gPtuGIUK17Rl3-gd2ldYm2kUoJTjqnCP6lbO4IJ0aeyWHc0NVtJqGbV6Uhd_IWqZ4ApuBTBhxr_TUBOgjqYnBfwZq5fbpevhmBz3AFz2gFTR22OO2AOVfPivuC1n2D4ofg-9ArQE5BrKt7C8ktH_3T9Bmu2u-I</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Ishioka, Mitsuaki</creator><creator>Miura, Kouichi</creator><creator>Minami, Shinichiro</creator><creator>Shimura, Yoichiro</creator><creator>Ohnishi, Hirohide</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20170201</creationdate><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><author>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alanine Transaminase - metabolism</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteroidetes</topic><topic>Biochemistry</topic><topic>Cholesterol - metabolism</topic><topic>Choline</topic><topic>Clostridiales</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Female</topic><topic>Firmicutes</topic><topic>Gastroenterology</topic><topic>Gastrointestinal Microbiome</topic><topic>Hepatology</topic><topic>Ileum - immunology</topic><topic>Interleukin-17 - immunology</topic><topic>Interleukins</topic><topic>Intestines - immunology</topic><topic>Intestines - microbiology</topic><topic>Lactates</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Methionine</topic><topic>Metronidazole</topic><topic>Mice</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Neomycin</topic><topic>Non-alcoholic Fatty Liver Disease - immunology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - microbiology</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Portal Vein</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Severity of Illness Index</topic><topic>Transplant Surgery</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Miura, Kouichi</creatorcontrib><creatorcontrib>Minami, Shinichiro</creatorcontrib><creatorcontrib>Shimura, Yoichiro</creatorcontrib><creatorcontrib>Ohnishi, Hirohide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Digestive diseases and sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishioka, Mitsuaki</au><au>Miura, Kouichi</au><au>Minami, Shinichiro</au><au>Shimura, Yoichiro</au><au>Ohnishi, Hirohide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</atitle><jtitle>Digestive diseases and sciences</jtitle><stitle>Dig Dis Sci</stitle><addtitle>Dig Dis Sci</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>2</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>0163-2116</issn><eissn>1573-2568</eissn><coden>DDSCDJ</coden><abstract>Background
Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.
Aim
We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.
Methods
Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.
Results
Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the
Firmicutes
phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of
Clostridiales
, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium
Parabacteroides goldsteinii
in the phylum
Bacteroidetes
. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.
Conclusions
The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27913996</pmid><doi>10.1007/s10620-016-4393-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-2116 |
ispartof | Digestive diseases and sciences, 2017-02, Vol.62 (2), p.396-406 |
issn | 0163-2116 1573-2568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872833974 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Alanine Transaminase - metabolism Amino acids Analysis Animals Bacteria Bacteroidetes Biochemistry Cholesterol - metabolism Choline Clostridiales Diet Diet, High-Fat Disease Models, Animal Fatty Acids, Nonesterified - metabolism Female Firmicutes Gastroenterology Gastrointestinal Microbiome Hepatology Ileum - immunology Interleukin-17 - immunology Interleukins Intestines - immunology Intestines - microbiology Lactates Liver - metabolism Liver - pathology Male Medicine Medicine & Public Health Methionine Metronidazole Mice Microbiota (Symbiotic organisms) Neomycin Non-alcoholic Fatty Liver Disease - immunology Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - microbiology Non-alcoholic Fatty Liver Disease - pathology Oncology Original Article Portal Vein Real-Time Polymerase Chain Reaction Severity of Illness Index Transplant Surgery Triglycerides - metabolism |
title | Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20Gut%20Microbiota%20Composition%20and%20Immune%20Response%20in%20Experimental%20Steatohepatitis%20Mouse%20Models&rft.jtitle=Digestive%20diseases%20and%20sciences&rft.au=Ishioka,%20Mitsuaki&rft.date=2017-02-01&rft.volume=62&rft.issue=2&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=0163-2116&rft.eissn=1573-2568&rft.coden=DDSCDJ&rft_id=info:doi/10.1007/s10620-016-4393-x&rft_dat=%3Cgale_proqu%3EA712938530%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865250280&rft_id=info:pmid/27913996&rft_galeid=A712938530&rfr_iscdi=true |