Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models

Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digestive diseases and sciences 2017-02, Vol.62 (2), p.396-406
Hauptverfasser: Ishioka, Mitsuaki, Miura, Kouichi, Minami, Shinichiro, Shimura, Yoichiro, Ohnishi, Hirohide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 396
container_title Digestive diseases and sciences
container_volume 62
creator Ishioka, Mitsuaki
Miura, Kouichi
Minami, Shinichiro
Shimura, Yoichiro
Ohnishi, Hirohide
description Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Methods Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Results Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales , while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes . In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. Conclusions The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.
doi_str_mv 10.1007/s10620-016-4393-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872833974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712938530</galeid><sourcerecordid>A712938530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</originalsourceid><addsrcrecordid>eNqNkkuLFDEQxxtR3HH1A3iRgBcvvebReR2HYV0XdhB8nEM6XVmzdCdtJw3jtzfDrE8UJIeEqt__T1WqmuY5wRcEY_k6EywobjERbcc0aw8Pmg3hkrWUC_Ww2dREfRMizponOd9hjLUk4nFzRqUmTGuxadx2LLDAgK7WgvbBLakPqVi0S9OccighRWTjgK6naY2A3kOeU8yAQkSXhxmWMEEsdkQfCtiSPsNsSxVltE9rpfZpgDE_bR55O2Z4dn-fN5_eXH7cvW1v3l1d77Y3reNMlRYA9wDUaaF6wSQdQFPPOw9SKyU1dj13TsjOEd73ihExOO691yC8Hpjr2Xnz6uQ7L-nLCrmYKWQH42gj1HIMUZIqxrTs_gPtuGIUK17Rl3-gd2ldYm2kUoJTjqnCP6lbO4IJ0aeyWHc0NVtJqGbV6Uhd_IWqZ4ApuBTBhxr_TUBOgjqYnBfwZq5fbpevhmBz3AFz2gFTR22OO2AOVfPivuC1n2D4ofg-9ArQE5BrKt7C8ktH_3T9Bmu2u-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865250280</pqid></control><display><type>article</type><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</creator><creatorcontrib>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</creatorcontrib><description>Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Methods Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Results Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales , while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes . In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. Conclusions The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</description><identifier>ISSN: 0163-2116</identifier><identifier>EISSN: 1573-2568</identifier><identifier>DOI: 10.1007/s10620-016-4393-x</identifier><identifier>PMID: 27913996</identifier><identifier>CODEN: DDSCDJ</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alanine Transaminase - metabolism ; Amino acids ; Analysis ; Animals ; Bacteria ; Bacteroidetes ; Biochemistry ; Cholesterol - metabolism ; Choline ; Clostridiales ; Diet ; Diet, High-Fat ; Disease Models, Animal ; Fatty Acids, Nonesterified - metabolism ; Female ; Firmicutes ; Gastroenterology ; Gastrointestinal Microbiome ; Hepatology ; Ileum - immunology ; Interleukin-17 - immunology ; Interleukins ; Intestines - immunology ; Intestines - microbiology ; Lactates ; Liver - metabolism ; Liver - pathology ; Male ; Medicine ; Medicine &amp; Public Health ; Methionine ; Metronidazole ; Mice ; Microbiota (Symbiotic organisms) ; Neomycin ; Non-alcoholic Fatty Liver Disease - immunology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - microbiology ; Non-alcoholic Fatty Liver Disease - pathology ; Oncology ; Original Article ; Portal Vein ; Real-Time Polymerase Chain Reaction ; Severity of Illness Index ; Transplant Surgery ; Triglycerides - metabolism</subject><ispartof>Digestive diseases and sciences, 2017-02, Vol.62 (2), p.396-406</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Digestive Diseases and Sciences is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</citedby><cites>FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10620-016-4393-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10620-016-4393-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27913996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Miura, Kouichi</creatorcontrib><creatorcontrib>Minami, Shinichiro</creatorcontrib><creatorcontrib>Shimura, Yoichiro</creatorcontrib><creatorcontrib>Ohnishi, Hirohide</creatorcontrib><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><title>Digestive diseases and sciences</title><addtitle>Dig Dis Sci</addtitle><addtitle>Dig Dis Sci</addtitle><description>Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Methods Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Results Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales , while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes . In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. Conclusions The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</description><subject>Alanine Transaminase - metabolism</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteroidetes</subject><subject>Biochemistry</subject><subject>Cholesterol - metabolism</subject><subject>Choline</subject><subject>Clostridiales</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Female</subject><subject>Firmicutes</subject><subject>Gastroenterology</subject><subject>Gastrointestinal Microbiome</subject><subject>Hepatology</subject><subject>Ileum - immunology</subject><subject>Interleukin-17 - immunology</subject><subject>Interleukins</subject><subject>Intestines - immunology</subject><subject>Intestines - microbiology</subject><subject>Lactates</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methionine</subject><subject>Metronidazole</subject><subject>Mice</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Neomycin</subject><subject>Non-alcoholic Fatty Liver Disease - immunology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - microbiology</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Portal Vein</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Severity of Illness Index</subject><subject>Transplant Surgery</subject><subject>Triglycerides - metabolism</subject><issn>0163-2116</issn><issn>1573-2568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkkuLFDEQxxtR3HH1A3iRgBcvvebReR2HYV0XdhB8nEM6XVmzdCdtJw3jtzfDrE8UJIeEqt__T1WqmuY5wRcEY_k6EywobjERbcc0aw8Pmg3hkrWUC_Ww2dREfRMizponOd9hjLUk4nFzRqUmTGuxadx2LLDAgK7WgvbBLakPqVi0S9OccighRWTjgK6naY2A3kOeU8yAQkSXhxmWMEEsdkQfCtiSPsNsSxVltE9rpfZpgDE_bR55O2Z4dn-fN5_eXH7cvW1v3l1d77Y3reNMlRYA9wDUaaF6wSQdQFPPOw9SKyU1dj13TsjOEd73ihExOO691yC8Hpjr2Xnz6uQ7L-nLCrmYKWQH42gj1HIMUZIqxrTs_gPtuGIUK17Rl3-gd2ldYm2kUoJTjqnCP6lbO4IJ0aeyWHc0NVtJqGbV6Uhd_IWqZ4ApuBTBhxr_TUBOgjqYnBfwZq5fbpevhmBz3AFz2gFTR22OO2AOVfPivuC1n2D4ofg-9ArQE5BrKt7C8ktH_3T9Bmu2u-I</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Ishioka, Mitsuaki</creator><creator>Miura, Kouichi</creator><creator>Minami, Shinichiro</creator><creator>Shimura, Yoichiro</creator><creator>Ohnishi, Hirohide</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20170201</creationdate><title>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</title><author>Ishioka, Mitsuaki ; Miura, Kouichi ; Minami, Shinichiro ; Shimura, Yoichiro ; Ohnishi, Hirohide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-ee0bee2c968b6372de92f54fe7988790cb5cc674c15bb8316dc5fff9e6f9d3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alanine Transaminase - metabolism</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteroidetes</topic><topic>Biochemistry</topic><topic>Cholesterol - metabolism</topic><topic>Choline</topic><topic>Clostridiales</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Female</topic><topic>Firmicutes</topic><topic>Gastroenterology</topic><topic>Gastrointestinal Microbiome</topic><topic>Hepatology</topic><topic>Ileum - immunology</topic><topic>Interleukin-17 - immunology</topic><topic>Interleukins</topic><topic>Intestines - immunology</topic><topic>Intestines - microbiology</topic><topic>Lactates</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methionine</topic><topic>Metronidazole</topic><topic>Mice</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Neomycin</topic><topic>Non-alcoholic Fatty Liver Disease - immunology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - microbiology</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Portal Vein</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Severity of Illness Index</topic><topic>Transplant Surgery</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Miura, Kouichi</creatorcontrib><creatorcontrib>Minami, Shinichiro</creatorcontrib><creatorcontrib>Shimura, Yoichiro</creatorcontrib><creatorcontrib>Ohnishi, Hirohide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Digestive diseases and sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishioka, Mitsuaki</au><au>Miura, Kouichi</au><au>Minami, Shinichiro</au><au>Shimura, Yoichiro</au><au>Ohnishi, Hirohide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models</atitle><jtitle>Digestive diseases and sciences</jtitle><stitle>Dig Dis Sci</stitle><addtitle>Dig Dis Sci</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>2</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>0163-2116</issn><eissn>1573-2568</eissn><coden>DDSCDJ</coden><abstract>Background Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. Aim We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Methods Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Results Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales , while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes . In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. Conclusions The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27913996</pmid><doi>10.1007/s10620-016-4393-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-2116
ispartof Digestive diseases and sciences, 2017-02, Vol.62 (2), p.396-406
issn 0163-2116
1573-2568
language eng
recordid cdi_proquest_miscellaneous_1872833974
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Alanine Transaminase - metabolism
Amino acids
Analysis
Animals
Bacteria
Bacteroidetes
Biochemistry
Cholesterol - metabolism
Choline
Clostridiales
Diet
Diet, High-Fat
Disease Models, Animal
Fatty Acids, Nonesterified - metabolism
Female
Firmicutes
Gastroenterology
Gastrointestinal Microbiome
Hepatology
Ileum - immunology
Interleukin-17 - immunology
Interleukins
Intestines - immunology
Intestines - microbiology
Lactates
Liver - metabolism
Liver - pathology
Male
Medicine
Medicine & Public Health
Methionine
Metronidazole
Mice
Microbiota (Symbiotic organisms)
Neomycin
Non-alcoholic Fatty Liver Disease - immunology
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - microbiology
Non-alcoholic Fatty Liver Disease - pathology
Oncology
Original Article
Portal Vein
Real-Time Polymerase Chain Reaction
Severity of Illness Index
Transplant Surgery
Triglycerides - metabolism
title Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20Gut%20Microbiota%20Composition%20and%20Immune%20Response%20in%20Experimental%20Steatohepatitis%20Mouse%20Models&rft.jtitle=Digestive%20diseases%20and%20sciences&rft.au=Ishioka,%20Mitsuaki&rft.date=2017-02-01&rft.volume=62&rft.issue=2&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=0163-2116&rft.eissn=1573-2568&rft.coden=DDSCDJ&rft_id=info:doi/10.1007/s10620-016-4393-x&rft_dat=%3Cgale_proqu%3EA712938530%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865250280&rft_id=info:pmid/27913996&rft_galeid=A712938530&rfr_iscdi=true