ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS
This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents...
Gespeichert in:
Veröffentlicht in: | Macroeconomic Dynamics 2016-03, Vol.20 (2), p.601-621 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 2 |
container_start_page | 601 |
container_title | Macroeconomic Dynamics |
container_volume | 20 |
creator | Kirman, Alan |
description | This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena. |
doi_str_mv | 10.1017/S1365100514000339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872825687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1365100514000339</cupid><sourcerecordid>3961403301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</originalsourceid><addsrcrecordid>eNp1kU1Lw0AQhoMoWKs_wFvAix6iM7vZj3hbYtoG0kSaePGybPOhKW2jSSv4701pEVE8zTDv8w4zvJZ1iXCLgOIuRcoZAjB0AYBS78gaoMs9RwLjx33fy85OP7XOum4BgJwSb2ApFWepreIHO07i5DELpyqy0yAaOclsrOLwWWVhEt_bUZCmSZzao2RmT5U_SwK_56ehn55bJ5VZduXFoQ6tp1GQ-RMnSsahryInZ5xvHAOF4cxULjeCFUARZZEDB5S5IAYg91glBasgd4kovYrkhDLKvAIFElnN6dC62e99NUv91tYr037qxtR6oiK9mwG6QqDHP7Bnr_fsW9u8b8tuo1d1l5fLpVmXzbbTKAWRhHEpevTqF7potu26_0Sj4IK5RAroKdxTedt0XVtW3xcg6F0A-k8AvYcePGY1b-vipfyx-l_XF1TVfek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767542870</pqid></control><display><type>article</type><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><source>Cambridge Journals</source><creator>Kirman, Alan</creator><creatorcontrib>Kirman, Alan</creatorcontrib><description>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</description><identifier>ISSN: 1365-1005</identifier><identifier>EISSN: 1469-8056</identifier><identifier>DOI: 10.1017/S1365100514000339</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Behavior ; Central banks ; Economic development ; Economic theory ; Economics ; Economics and Finance ; Economists ; Equilibrium ; Formicidae ; Humanities and Social Sciences ; Insects ; Macroeconomics ; Rationality ; Securities markets ; Social conditions & trends ; Volatility</subject><ispartof>Macroeconomic Dynamics, 2016-03, Vol.20 (2), p.601-621</ispartof><rights>Copyright © Cambridge University Press 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</citedby><cites>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1365100514000339/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-01477196$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirman, Alan</creatorcontrib><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><title>Macroeconomic Dynamics</title><addtitle>Macroecon. Dynam</addtitle><description>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</description><subject>Behavior</subject><subject>Central banks</subject><subject>Economic development</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Economists</subject><subject>Equilibrium</subject><subject>Formicidae</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Macroeconomics</subject><subject>Rationality</subject><subject>Securities markets</subject><subject>Social conditions & trends</subject><subject>Volatility</subject><issn>1365-1005</issn><issn>1469-8056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1Lw0AQhoMoWKs_wFvAix6iM7vZj3hbYtoG0kSaePGybPOhKW2jSSv4701pEVE8zTDv8w4zvJZ1iXCLgOIuRcoZAjB0AYBS78gaoMs9RwLjx33fy85OP7XOum4BgJwSb2ApFWepreIHO07i5DELpyqy0yAaOclsrOLwWWVhEt_bUZCmSZzao2RmT5U_SwK_56ehn55bJ5VZduXFoQ6tp1GQ-RMnSsahryInZ5xvHAOF4cxULjeCFUARZZEDB5S5IAYg91glBasgd4kovYrkhDLKvAIFElnN6dC62e99NUv91tYr037qxtR6oiK9mwG6QqDHP7Bnr_fsW9u8b8tuo1d1l5fLpVmXzbbTKAWRhHEpevTqF7potu26_0Sj4IK5RAroKdxTedt0XVtW3xcg6F0A-k8AvYcePGY1b-vipfyx-l_XF1TVfek</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kirman, Alan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SS</scope><scope>1XC</scope><scope>BXJBU</scope></search><sort><creationdate>20160301</creationdate><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><author>Kirman, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Behavior</topic><topic>Central banks</topic><topic>Economic development</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Economists</topic><topic>Equilibrium</topic><topic>Formicidae</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Macroeconomics</topic><topic>Rationality</topic><topic>Securities markets</topic><topic>Social conditions & trends</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirman, Alan</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Macroeconomic Dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirman, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</atitle><jtitle>Macroeconomic Dynamics</jtitle><addtitle>Macroecon. Dynam</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>20</volume><issue>2</issue><spage>601</spage><epage>621</epage><pages>601-621</pages><issn>1365-1005</issn><eissn>1469-8056</eissn><abstract>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1365100514000339</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1005 |
ispartof | Macroeconomic Dynamics, 2016-03, Vol.20 (2), p.601-621 |
issn | 1365-1005 1469-8056 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872825687 |
source | Cambridge Journals |
subjects | Behavior Central banks Economic development Economic theory Economics Economics and Finance Economists Equilibrium Formicidae Humanities and Social Sciences Insects Macroeconomics Rationality Securities markets Social conditions & trends Volatility |
title | ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANTS%20AND%20NONOPTIMAL%20SELF-ORGANIZATION:%20LESSONS%20FOR%20MACROECONOMICS&rft.jtitle=Macroeconomic%20Dynamics&rft.au=Kirman,%20Alan&rft.date=2016-03-01&rft.volume=20&rft.issue=2&rft.spage=601&rft.epage=621&rft.pages=601-621&rft.issn=1365-1005&rft.eissn=1469-8056&rft_id=info:doi/10.1017/S1365100514000339&rft_dat=%3Cproquest_hal_p%3E3961403301%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767542870&rft_id=info:pmid/&rft_cupid=10_1017_S1365100514000339&rfr_iscdi=true |