ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS

This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macroeconomic Dynamics 2016-03, Vol.20 (2), p.601-621
1. Verfasser: Kirman, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 2
container_start_page 601
container_title Macroeconomic Dynamics
container_volume 20
creator Kirman, Alan
description This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.
doi_str_mv 10.1017/S1365100514000339
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872825687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1365100514000339</cupid><sourcerecordid>3961403301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</originalsourceid><addsrcrecordid>eNp1kU1Lw0AQhoMoWKs_wFvAix6iM7vZj3hbYtoG0kSaePGybPOhKW2jSSv4701pEVE8zTDv8w4zvJZ1iXCLgOIuRcoZAjB0AYBS78gaoMs9RwLjx33fy85OP7XOum4BgJwSb2ApFWepreIHO07i5DELpyqy0yAaOclsrOLwWWVhEt_bUZCmSZzao2RmT5U_SwK_56ehn55bJ5VZduXFoQ6tp1GQ-RMnSsahryInZ5xvHAOF4cxULjeCFUARZZEDB5S5IAYg91glBasgd4kovYrkhDLKvAIFElnN6dC62e99NUv91tYr037qxtR6oiK9mwG6QqDHP7Bnr_fsW9u8b8tuo1d1l5fLpVmXzbbTKAWRhHEpevTqF7potu26_0Sj4IK5RAroKdxTedt0XVtW3xcg6F0A-k8AvYcePGY1b-vipfyx-l_XF1TVfek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767542870</pqid></control><display><type>article</type><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><source>Cambridge Journals</source><creator>Kirman, Alan</creator><creatorcontrib>Kirman, Alan</creatorcontrib><description>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</description><identifier>ISSN: 1365-1005</identifier><identifier>EISSN: 1469-8056</identifier><identifier>DOI: 10.1017/S1365100514000339</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Behavior ; Central banks ; Economic development ; Economic theory ; Economics ; Economics and Finance ; Economists ; Equilibrium ; Formicidae ; Humanities and Social Sciences ; Insects ; Macroeconomics ; Rationality ; Securities markets ; Social conditions &amp; trends ; Volatility</subject><ispartof>Macroeconomic Dynamics, 2016-03, Vol.20 (2), p.601-621</ispartof><rights>Copyright © Cambridge University Press 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</citedby><cites>FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1365100514000339/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-01477196$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirman, Alan</creatorcontrib><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><title>Macroeconomic Dynamics</title><addtitle>Macroecon. Dynam</addtitle><description>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</description><subject>Behavior</subject><subject>Central banks</subject><subject>Economic development</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Economists</subject><subject>Equilibrium</subject><subject>Formicidae</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Macroeconomics</subject><subject>Rationality</subject><subject>Securities markets</subject><subject>Social conditions &amp; trends</subject><subject>Volatility</subject><issn>1365-1005</issn><issn>1469-8056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1Lw0AQhoMoWKs_wFvAix6iM7vZj3hbYtoG0kSaePGybPOhKW2jSSv4701pEVE8zTDv8w4zvJZ1iXCLgOIuRcoZAjB0AYBS78gaoMs9RwLjx33fy85OP7XOum4BgJwSb2ApFWepreIHO07i5DELpyqy0yAaOclsrOLwWWVhEt_bUZCmSZzao2RmT5U_SwK_56ehn55bJ5VZduXFoQ6tp1GQ-RMnSsahryInZ5xvHAOF4cxULjeCFUARZZEDB5S5IAYg91glBasgd4kovYrkhDLKvAIFElnN6dC62e99NUv91tYr037qxtR6oiK9mwG6QqDHP7Bnr_fsW9u8b8tuo1d1l5fLpVmXzbbTKAWRhHEpevTqF7potu26_0Sj4IK5RAroKdxTedt0XVtW3xcg6F0A-k8AvYcePGY1b-vipfyx-l_XF1TVfek</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kirman, Alan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SS</scope><scope>1XC</scope><scope>BXJBU</scope></search><sort><creationdate>20160301</creationdate><title>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</title><author>Kirman, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-a0da65af46a75d03118dc06018c72a00c95f875f0c427e9f2c235359d17128fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Behavior</topic><topic>Central banks</topic><topic>Economic development</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Economists</topic><topic>Equilibrium</topic><topic>Formicidae</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Macroeconomics</topic><topic>Rationality</topic><topic>Securities markets</topic><topic>Social conditions &amp; trends</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirman, Alan</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Macroeconomic Dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirman, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS</atitle><jtitle>Macroeconomic Dynamics</jtitle><addtitle>Macroecon. Dynam</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>20</volume><issue>2</issue><spage>601</spage><epage>621</epage><pages>601-621</pages><issn>1365-1005</issn><eissn>1469-8056</eissn><abstract>This paper suggests that we need an alternative approach to economic modeling in general, and macroeconomic modeling in particular, if we are to capture salient characteristics of recent economic developments. Rather than focusing on models built on the basis of isolated, rational, optimizing agents, we should recognize that much simpler individuals following basic rules can collectively generate complex behavior. We have lessons to learn from studying the behavior of social insects for example. Noisy systems of interactive agents can generate aggregate phenomena such as sudden changes in the state of an economy or market, with no external shock. I give two examples of simple models of financial markets to illustrate this but would argue more generally that such models are indispensible if we are to understand aggregate economic phenomena.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1365100514000339</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-1005
ispartof Macroeconomic Dynamics, 2016-03, Vol.20 (2), p.601-621
issn 1365-1005
1469-8056
language eng
recordid cdi_proquest_miscellaneous_1872825687
source Cambridge Journals
subjects Behavior
Central banks
Economic development
Economic theory
Economics
Economics and Finance
Economists
Equilibrium
Formicidae
Humanities and Social Sciences
Insects
Macroeconomics
Rationality
Securities markets
Social conditions & trends
Volatility
title ANTS AND NONOPTIMAL SELF-ORGANIZATION: LESSONS FOR MACROECONOMICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANTS%20AND%20NONOPTIMAL%20SELF-ORGANIZATION:%20LESSONS%20FOR%20MACROECONOMICS&rft.jtitle=Macroeconomic%20Dynamics&rft.au=Kirman,%20Alan&rft.date=2016-03-01&rft.volume=20&rft.issue=2&rft.spage=601&rft.epage=621&rft.pages=601-621&rft.issn=1365-1005&rft.eissn=1469-8056&rft_id=info:doi/10.1017/S1365100514000339&rft_dat=%3Cproquest_hal_p%3E3961403301%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767542870&rft_id=info:pmid/&rft_cupid=10_1017_S1365100514000339&rfr_iscdi=true