Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm: e1003713
The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cel...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-07, Vol.10 (7) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | PLoS computational biology |
container_volume | 10 |
creator | Parikh, Ankur P Curtis, Ross E Kuhn, Irene Becker-Weimann, Sabine Bissell, Mina Xing, Eric P Wu, Wei |
description | The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state" strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer. |
doi_str_mv | 10.1371/journal.pcbi.1003713 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872822471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3702233111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p941-7890838fae7cc7b6028c9e502ed2a91010a591e21bd5743e7d12d97a25b84da93</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEPAi5etmWSzSY61-AVFRSp4K9ndad2abmqyrfjvTbH04MXTzLw8PAwvIefABiAUXC38OrTWDVZV2QyAsZSJA9IDKUWmhNSH-z1_OyYnMS4SI7UpeqR8xO7Lhw86TILv2ETqZ_Q6oI0dHdm2wkCfg58HjLHxLbVtTV9wgyFaR19j086ppZOAmN1svNts773QzX1ouvflKTmaWRfxbDf7ZHJ7MxndZ-Onu4fRcJytTA6Z0oZpoWcWVVWpsmBcVwYl41hza4ABs9IAcihrqXKBqgZeG2W5LHVeWyP65PJXuwr-c42xmy6bWKFztkW_jlPQimvO89TNv6gCbWQBxdZ68QfdlZ2oQqf3ktWIH5dbdXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685028729</pqid></control><display><type>article</type><title>Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm: e1003713</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Parikh, Ankur P ; Curtis, Ross E ; Kuhn, Irene ; Becker-Weimann, Sabine ; Bissell, Mina ; Xing, Eric P ; Wu, Wei</creator><creatorcontrib>Parikh, Ankur P ; Curtis, Ross E ; Kuhn, Irene ; Becker-Weimann, Sabine ; Bissell, Mina ; Xing, Eric P ; Wu, Wei</creatorcontrib><description>The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state" strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.</description><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003713</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Breast ; Breast cancer ; Cell cycle ; Drugs ; Enrichment ; Gene expression ; Genes ; Insulin ; Networks ; Progressions ; Reversion ; Studies</subject><ispartof>PLoS computational biology, 2014-07, Vol.10 (7)</ispartof><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Parikh AP, Curtis RE, Kuhn I, Becker-Weimann S, Bissell M, Xing EP, et al. (2014) Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm. PLoS Comput Biol 10(7): e1003713. doi:10.1371/journal.pcbi.1003713</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Parikh, Ankur P</creatorcontrib><creatorcontrib>Curtis, Ross E</creatorcontrib><creatorcontrib>Kuhn, Irene</creatorcontrib><creatorcontrib>Becker-Weimann, Sabine</creatorcontrib><creatorcontrib>Bissell, Mina</creatorcontrib><creatorcontrib>Xing, Eric P</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm: e1003713</title><title>PLoS computational biology</title><description>The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state" strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.</description><subject>Algorithms</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cell cycle</subject><subject>Drugs</subject><subject>Enrichment</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Insulin</subject><subject>Networks</subject><subject>Progressions</subject><subject>Reversion</subject><subject>Studies</subject><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LAzEQhoMoWKv_wEPAi5etmWSzSY61-AVFRSp4K9ndad2abmqyrfjvTbH04MXTzLw8PAwvIefABiAUXC38OrTWDVZV2QyAsZSJA9IDKUWmhNSH-z1_OyYnMS4SI7UpeqR8xO7Lhw86TILv2ETqZ_Q6oI0dHdm2wkCfg58HjLHxLbVtTV9wgyFaR19j086ppZOAmN1svNts773QzX1ouvflKTmaWRfxbDf7ZHJ7MxndZ-Onu4fRcJytTA6Z0oZpoWcWVVWpsmBcVwYl41hza4ABs9IAcihrqXKBqgZeG2W5LHVeWyP65PJXuwr-c42xmy6bWKFztkW_jlPQimvO89TNv6gCbWQBxdZ68QfdlZ2oQqf3ktWIH5dbdXo</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Parikh, Ankur P</creator><creator>Curtis, Ross E</creator><creator>Kuhn, Irene</creator><creator>Becker-Weimann, Sabine</creator><creator>Bissell, Mina</creator><creator>Xing, Eric P</creator><creator>Wu, Wei</creator><general>Public Library of Science</general><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm</title><author>Parikh, Ankur P ; Curtis, Ross E ; Kuhn, Irene ; Becker-Weimann, Sabine ; Bissell, Mina ; Xing, Eric P ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p941-7890838fae7cc7b6028c9e502ed2a91010a591e21bd5743e7d12d97a25b84da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cell cycle</topic><topic>Drugs</topic><topic>Enrichment</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Insulin</topic><topic>Networks</topic><topic>Progressions</topic><topic>Reversion</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parikh, Ankur P</creatorcontrib><creatorcontrib>Curtis, Ross E</creatorcontrib><creatorcontrib>Kuhn, Irene</creatorcontrib><creatorcontrib>Becker-Weimann, Sabine</creatorcontrib><creatorcontrib>Bissell, Mina</creatorcontrib><creatorcontrib>Xing, Eric P</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parikh, Ankur P</au><au>Curtis, Ross E</au><au>Kuhn, Irene</au><au>Becker-Weimann, Sabine</au><au>Bissell, Mina</au><au>Xing, Eric P</au><au>Wu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm: e1003713</atitle><jtitle>PLoS computational biology</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>10</volume><issue>7</issue><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state" strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pcbi.1003713</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-734X |
ispartof | PLoS computational biology, 2014-07, Vol.10 (7) |
issn | 1553-734X 1553-7358 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872822471 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Breast Breast cancer Cell cycle Drugs Enrichment Gene expression Genes Insulin Networks Progressions Reversion Studies |
title | Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm: e1003713 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Analysis%20of%20Breast%20Cancer%20Progression%20and%20Reversal%20Using%20a%20Tree-Evolving%20Network%20Algorithm:%20e1003713&rft.jtitle=PLoS%20computational%20biology&rft.au=Parikh,%20Ankur%20P&rft.date=2014-07-01&rft.volume=10&rft.issue=7&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003713&rft_dat=%3Cproquest%3E3702233111%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685028729&rft_id=info:pmid/&rfr_iscdi=true |