Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels

Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-03, Vol.9 (10), p.8679-8687
Hauptverfasser: Cho, Eugene N, Zhitomirsky, David, Han, Grace G. D, Liu, Yun, Grossman, Jeffrey C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8687
container_issue 10
container_start_page 8679
container_title ACS applied materials & interfaces
container_volume 9
creator Cho, Eugene N
Zhitomirsky, David
Han, Grace G. D
Liu, Yun
Grossman, Jeffrey C
description Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.
doi_str_mv 10.1021/acsami.6b15018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872579877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872579877</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-850770fc0a247ab8a9bba80ebc720972f68075114fe21e652fa465f2361f52c13</originalsourceid><addsrcrecordid>eNp1kMFPwjAUhxujEUSvHs2OxmTYdu1ajgRBTDAewPPSjVco6TZsN5Lx1zsy5ObpveR9v1_yPoQeCR4STMmryrzKzTBOCcdEXqE-GTEWSsrp9WVnrIfuvN9hHEcU81vUo5JGjPGoj-CztJDVVjnbBNNiYwoAB-tgfCxTKI5QQPAGzhxUZQ7gA126YG422xYFt2naW-FN1QTL0pp1uKxUBadduWC1BZcrG8xqsP4e3WhlPTyc5wB9z6aryTxcfL1_TMaLUEUCV6HkWAisM6woEyqVapSmSmJIM0HxSFAdSyw4IUwDJRBzqhWLuaZRTDSnGYkG6Lnr3bvypwZfJbnxGVirCihrnxApKBcjKUSLDjs0c6X3DnSydyZXrkkITk5qk05tclbbBp7O3XWaw_qC_7lsgZcOaIPJrqxd0b76X9svXSqDqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872579877</pqid></control><display><type>article</type><title>Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels</title><source>ACS Publications</source><creator>Cho, Eugene N ; Zhitomirsky, David ; Han, Grace G. D ; Liu, Yun ; Grossman, Jeffrey C</creator><creatorcontrib>Cho, Eugene N ; Zhitomirsky, David ; Han, Grace G. D ; Liu, Yun ; Grossman, Jeffrey C</creatorcontrib><description>Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b15018</identifier><identifier>PMID: 28234453</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-03, Vol.9 (10), p.8679-8687</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-850770fc0a247ab8a9bba80ebc720972f68075114fe21e652fa465f2361f52c13</citedby><cites>FETCH-LOGICAL-a370t-850770fc0a247ab8a9bba80ebc720972f68075114fe21e652fa465f2361f52c13</cites><orcidid>0000-0002-7093-8761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b15018$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b15018$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Eugene N</creatorcontrib><creatorcontrib>Zhitomirsky, David</creatorcontrib><creatorcontrib>Han, Grace G. D</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><title>Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFPwjAUhxujEUSvHs2OxmTYdu1ajgRBTDAewPPSjVco6TZsN5Lx1zsy5ObpveR9v1_yPoQeCR4STMmryrzKzTBOCcdEXqE-GTEWSsrp9WVnrIfuvN9hHEcU81vUo5JGjPGoj-CztJDVVjnbBNNiYwoAB-tgfCxTKI5QQPAGzhxUZQ7gA126YG422xYFt2naW-FN1QTL0pp1uKxUBadduWC1BZcrG8xqsP4e3WhlPTyc5wB9z6aryTxcfL1_TMaLUEUCV6HkWAisM6woEyqVapSmSmJIM0HxSFAdSyw4IUwDJRBzqhWLuaZRTDSnGYkG6Lnr3bvypwZfJbnxGVirCihrnxApKBcjKUSLDjs0c6X3DnSydyZXrkkITk5qk05tclbbBp7O3XWaw_qC_7lsgZcOaIPJrqxd0b76X9svXSqDqw</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Cho, Eugene N</creator><creator>Zhitomirsky, David</creator><creator>Han, Grace G. D</creator><creator>Liu, Yun</creator><creator>Grossman, Jeffrey C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7093-8761</orcidid></search><sort><creationdate>20170315</creationdate><title>Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels</title><author>Cho, Eugene N ; Zhitomirsky, David ; Han, Grace G. D ; Liu, Yun ; Grossman, Jeffrey C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-850770fc0a247ab8a9bba80ebc720972f68075114fe21e652fa465f2361f52c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Eugene N</creatorcontrib><creatorcontrib>Zhitomirsky, David</creatorcontrib><creatorcontrib>Han, Grace G. D</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Eugene N</au><au>Zhitomirsky, David</au><au>Han, Grace G. D</au><au>Liu, Yun</au><au>Grossman, Jeffrey C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>9</volume><issue>10</issue><spage>8679</spage><epage>8687</epage><pages>8679-8687</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28234453</pmid><doi>10.1021/acsami.6b15018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7093-8761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-03, Vol.9 (10), p.8679-8687
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1872579877
source ACS Publications
title Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Engineered%20Azobenzene%20Derivatives%20for%20High%20Energy%20Density%20Solid-State%20Solar%20Thermal%20Fuels&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cho,%20Eugene%20N&rft.date=2017-03-15&rft.volume=9&rft.issue=10&rft.spage=8679&rft.epage=8687&rft.pages=8679-8687&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b15018&rft_dat=%3Cproquest_cross%3E1872579877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872579877&rft_id=info:pmid/28234453&rfr_iscdi=true