Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations
We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion...
Gespeichert in:
Veröffentlicht in: | Langmuir 2017-03, Vol.33 (9), p.2306-2317 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2317 |
---|---|
container_issue | 9 |
container_start_page | 2306 |
container_title | Langmuir |
container_volume | 33 |
creator | Filipová, Lenka Kohagen, Miriam Štacko, Peter Muchová, Eva Slavíček, Petr Klán, Petr |
description | We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles. |
doi_str_mv | 10.1021/acs.langmuir.6b04455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872579870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872579870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EotvCGyDkS26y-C-xc7m0_EldQG25jsbOuHWVxIudFO0-Qp-aLLvlkquRRt85ozOHkDecLTkT_D24vOxguO2nkJaVZUqV5TOy4KVgRWmEfk4WTCtZaFXJE3Ka8z1jrJaqfklOhBFSKWMW5PHHXRxj_h1GdxeGWxo9Xe2ixWGHAxYfIGNLr_ABU0a6Dg67DjMFGx-QwtBSGOn1ZHeYIr3BfoMJxinNxCrT63Fqw6y2W_ptffWXXscO3dRBohfbAfrgZir082IMccivyAsPXcbXx3lGfn76eHP-pbj8_vnr-eqyAKnMWHjJnXMMlGIgbclry9qWi8orbz3WzmuoTSuFsVABIlQcvdatraUW4Csrz8i7g-8mxV8T5rHpQ94ngwHjlBtutCh1bTSbUXVAXYo5J_TNJoUe0rbhrNm30MwtNE8tNMcWZtnb44XJ9tj-Ez29fQbYAdjL7-OUhjnw_z3_AP_vmuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872579870</pqid></control><display><type>article</type><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</creator><creatorcontrib>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</creatorcontrib><description>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04455</identifier><identifier>PMID: 28234488</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-03, Vol.33 (9), p.2306-2317</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</citedby><cites>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</cites><orcidid>0000-0001-6287-2742 ; 0000-0002-5358-5538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b04455$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b04455$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipová, Lenka</creatorcontrib><creatorcontrib>Kohagen, Miriam</creatorcontrib><creatorcontrib>Štacko, Peter</creatorcontrib><creatorcontrib>Muchová, Eva</creatorcontrib><creatorcontrib>Slavíček, Petr</creatorcontrib><creatorcontrib>Klán, Petr</creatorcontrib><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kd1u1DAQhS0EotvCGyDkS26y-C-xc7m0_EldQG25jsbOuHWVxIudFO0-Qp-aLLvlkquRRt85ozOHkDecLTkT_D24vOxguO2nkJaVZUqV5TOy4KVgRWmEfk4WTCtZaFXJE3Ka8z1jrJaqfklOhBFSKWMW5PHHXRxj_h1GdxeGWxo9Xe2ixWGHAxYfIGNLr_ABU0a6Dg67DjMFGx-QwtBSGOn1ZHeYIr3BfoMJxinNxCrT63Fqw6y2W_ptffWXXscO3dRBohfbAfrgZir082IMccivyAsPXcbXx3lGfn76eHP-pbj8_vnr-eqyAKnMWHjJnXMMlGIgbclry9qWi8orbz3WzmuoTSuFsVABIlQcvdatraUW4Csrz8i7g-8mxV8T5rHpQ94ngwHjlBtutCh1bTSbUXVAXYo5J_TNJoUe0rbhrNm30MwtNE8tNMcWZtnb44XJ9tj-Ez29fQbYAdjL7-OUhjnw_z3_AP_vmuE</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Filipová, Lenka</creator><creator>Kohagen, Miriam</creator><creator>Štacko, Peter</creator><creator>Muchová, Eva</creator><creator>Slavíček, Petr</creator><creator>Klán, Petr</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6287-2742</orcidid><orcidid>https://orcid.org/0000-0002-5358-5538</orcidid></search><sort><creationdate>20170307</creationdate><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><author>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipová, Lenka</creatorcontrib><creatorcontrib>Kohagen, Miriam</creatorcontrib><creatorcontrib>Štacko, Peter</creatorcontrib><creatorcontrib>Muchová, Eva</creatorcontrib><creatorcontrib>Slavíček, Petr</creatorcontrib><creatorcontrib>Klán, Petr</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipová, Lenka</au><au>Kohagen, Miriam</au><au>Štacko, Peter</au><au>Muchová, Eva</au><au>Slavíček, Petr</au><au>Klán, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-03-07</date><risdate>2017</risdate><volume>33</volume><issue>9</issue><spage>2306</spage><epage>2317</epage><pages>2306-2317</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28234488</pmid><doi>10.1021/acs.langmuir.6b04455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6287-2742</orcidid><orcidid>https://orcid.org/0000-0002-5358-5538</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2017-03, Vol.33 (9), p.2306-2317 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872579870 |
source | ACS Publications |
title | Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoswitching%20of%20Azobenzene-Based%20Reverse%20Micelles%20above%20and%20at%20Subzero%20Temperatures%20As%20Studied%20by%20NMR%20and%20Molecular%20Dynamics%20Simulations&rft.jtitle=Langmuir&rft.au=Filipova%CC%81,%20Lenka&rft.date=2017-03-07&rft.volume=33&rft.issue=9&rft.spage=2306&rft.epage=2317&rft.pages=2306-2317&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04455&rft_dat=%3Cproquest_cross%3E1872579870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872579870&rft_id=info:pmid/28234488&rfr_iscdi=true |