Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations

We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-03, Vol.33 (9), p.2306-2317
Hauptverfasser: Filipová, Lenka, Kohagen, Miriam, Štacko, Peter, Muchová, Eva, Slavíček, Petr, Klán, Petr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317
container_issue 9
container_start_page 2306
container_title Langmuir
container_volume 33
creator Filipová, Lenka
Kohagen, Miriam
Štacko, Peter
Muchová, Eva
Slavíček, Petr
Klán, Petr
description We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.
doi_str_mv 10.1021/acs.langmuir.6b04455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872579870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872579870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EotvCGyDkS26y-C-xc7m0_EldQG25jsbOuHWVxIudFO0-Qp-aLLvlkquRRt85ozOHkDecLTkT_D24vOxguO2nkJaVZUqV5TOy4KVgRWmEfk4WTCtZaFXJE3Ka8z1jrJaqfklOhBFSKWMW5PHHXRxj_h1GdxeGWxo9Xe2ixWGHAxYfIGNLr_ABU0a6Dg67DjMFGx-QwtBSGOn1ZHeYIr3BfoMJxinNxCrT63Fqw6y2W_ptffWXXscO3dRBohfbAfrgZir082IMccivyAsPXcbXx3lGfn76eHP-pbj8_vnr-eqyAKnMWHjJnXMMlGIgbclry9qWi8orbz3WzmuoTSuFsVABIlQcvdatraUW4Csrz8i7g-8mxV8T5rHpQ94ngwHjlBtutCh1bTSbUXVAXYo5J_TNJoUe0rbhrNm30MwtNE8tNMcWZtnb44XJ9tj-Ez29fQbYAdjL7-OUhjnw_z3_AP_vmuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872579870</pqid></control><display><type>article</type><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</creator><creatorcontrib>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</creatorcontrib><description>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04455</identifier><identifier>PMID: 28234488</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-03, Vol.33 (9), p.2306-2317</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</citedby><cites>FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</cites><orcidid>0000-0001-6287-2742 ; 0000-0002-5358-5538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b04455$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b04455$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipová, Lenka</creatorcontrib><creatorcontrib>Kohagen, Miriam</creatorcontrib><creatorcontrib>Štacko, Peter</creatorcontrib><creatorcontrib>Muchová, Eva</creatorcontrib><creatorcontrib>Slavíček, Petr</creatorcontrib><creatorcontrib>Klán, Petr</creatorcontrib><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kd1u1DAQhS0EotvCGyDkS26y-C-xc7m0_EldQG25jsbOuHWVxIudFO0-Qp-aLLvlkquRRt85ozOHkDecLTkT_D24vOxguO2nkJaVZUqV5TOy4KVgRWmEfk4WTCtZaFXJE3Ka8z1jrJaqfklOhBFSKWMW5PHHXRxj_h1GdxeGWxo9Xe2ixWGHAxYfIGNLr_ABU0a6Dg67DjMFGx-QwtBSGOn1ZHeYIr3BfoMJxinNxCrT63Fqw6y2W_ptffWXXscO3dRBohfbAfrgZir082IMccivyAsPXcbXx3lGfn76eHP-pbj8_vnr-eqyAKnMWHjJnXMMlGIgbclry9qWi8orbz3WzmuoTSuFsVABIlQcvdatraUW4Csrz8i7g-8mxV8T5rHpQ94ngwHjlBtutCh1bTSbUXVAXYo5J_TNJoUe0rbhrNm30MwtNE8tNMcWZtnb44XJ9tj-Ez29fQbYAdjL7-OUhjnw_z3_AP_vmuE</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Filipová, Lenka</creator><creator>Kohagen, Miriam</creator><creator>Štacko, Peter</creator><creator>Muchová, Eva</creator><creator>Slavíček, Petr</creator><creator>Klán, Petr</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6287-2742</orcidid><orcidid>https://orcid.org/0000-0002-5358-5538</orcidid></search><sort><creationdate>20170307</creationdate><title>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</title><author>Filipová, Lenka ; Kohagen, Miriam ; Štacko, Peter ; Muchová, Eva ; Slavíček, Petr ; Klán, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f31ccc0a440a3b519b0dd126f4fbfe9cf7a98d328ba6aeea61ef77db9372af6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipová, Lenka</creatorcontrib><creatorcontrib>Kohagen, Miriam</creatorcontrib><creatorcontrib>Štacko, Peter</creatorcontrib><creatorcontrib>Muchová, Eva</creatorcontrib><creatorcontrib>Slavíček, Petr</creatorcontrib><creatorcontrib>Klán, Petr</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipová, Lenka</au><au>Kohagen, Miriam</au><au>Štacko, Peter</au><au>Muchová, Eva</au><au>Slavíček, Petr</au><au>Klán, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-03-07</date><risdate>2017</risdate><volume>33</volume><issue>9</issue><spage>2306</spage><epage>2317</epage><pages>2306-2317</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1. Upon freezing at 253 or 233 K, E-1 RMs partially precipitate from the solution but are redissolved upon warming whereas Z-1 RMs remain fully dissolved at all temperatures. Light-induced isomerization of 1 at low temperatures does not lead to the disintegration of RMs remaining in the solution; however, its scope is influenced by a precipitation process. To obtain a deeper molecular view of RMs, their structure was characterized by MD simulations. It is shown that RMs allow for amphiphile isomerization without causing any immediate significant structural changes in the micelles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28234488</pmid><doi>10.1021/acs.langmuir.6b04455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6287-2742</orcidid><orcidid>https://orcid.org/0000-0002-5358-5538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-03, Vol.33 (9), p.2306-2317
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1872579870
source ACS Publications
title Photoswitching of Azobenzene-Based Reverse Micelles above and at Subzero Temperatures As Studied by NMR and Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoswitching%20of%20Azobenzene-Based%20Reverse%20Micelles%20above%20and%20at%20Subzero%20Temperatures%20As%20Studied%20by%20NMR%20and%20Molecular%20Dynamics%20Simulations&rft.jtitle=Langmuir&rft.au=Filipova%CC%81,%20Lenka&rft.date=2017-03-07&rft.volume=33&rft.issue=9&rft.spage=2306&rft.epage=2317&rft.pages=2306-2317&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04455&rft_dat=%3Cproquest_cross%3E1872579870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872579870&rft_id=info:pmid/28234488&rfr_iscdi=true