A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)
This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavu...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2017-02, Vol.75 (3-4), p.823-832 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 3-4 |
container_start_page | 823 |
container_title | Water science and technology |
container_volume | 75 |
creator | Hooshyaripor, Farhad Yazdi, Jafar |
description | This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected. |
doi_str_mv | 10.2166/wst.2016.567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872579086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921193144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQRy0EgvKxMSNLLCCR4rMTu2ZDFRQEEgvMxnYubaCJwU5A_e8JKjAw3fL09LtHyCGwMQcpzz9TN-YM5LiQaoOMQGuZaSX4JhkxrkQGnIsdspvSC2NMiZxtkx0-4SLnEzEiz5e0xU_aYLcIZViG-YpWIdLUR7-wcY401umVNra1c2yw7Wjd0j4621Ib0SZ64m1Cmrq-XF3QWWidLTPM7uxHn6ivu9XpPtmq7DLhwc_dI0_XV4_Tm-z-YXY7vbzPvADdZcMrDgpdQgEV954JxKqSovRKee4USuDO5oUArm3uvEDHnQQLeV5UzGon9sjJ2vsWw3uPqTNNnTwul7bF0CcDE8ULpdlEDujxP_Ql9LEd1hnQHECLQTtQZ2vKx5BSxMq8xbqxcWWAme_yZihvvsubofyAH_1Ie9dg-Qf_phZfvcN-AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921193144</pqid></control><display><type>article</type><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hooshyaripor, Farhad ; Yazdi, Jafar</creator><creatorcontrib>Hooshyaripor, Farhad ; Yazdi, Jafar</creatorcontrib><description>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2016.567</identifier><identifier>PMID: 28234283</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Algorithms ; Cities ; Classification ; Computer simulation ; Financing ; Flood control ; Flood management ; Floods ; Genetic algorithms ; Hydrologic models ; Hydrology ; Investment ; Iran ; Loads (forces) ; Manholes ; Mathematical models ; Models, Theoretical ; Multiple objective analysis ; Optimization ; Pareto optimum ; Ponds ; Rain ; Retention basins ; Risk ; Risk Management ; Science ; Sorting algorithms ; Stormwater ; Stormwater management ; Urban areas ; Urbanization ; Water management</subject><ispartof>Water science and technology, 2017-02, Vol.75 (3-4), p.823-832</ispartof><rights>Copyright IWA Publishing Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</citedby><cites>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hooshyaripor, Farhad</creatorcontrib><creatorcontrib>Yazdi, Jafar</creatorcontrib><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</description><subject>Algorithms</subject><subject>Cities</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Financing</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Floods</subject><subject>Genetic algorithms</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Investment</subject><subject>Iran</subject><subject>Loads (forces)</subject><subject>Manholes</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Ponds</subject><subject>Rain</subject><subject>Retention basins</subject><subject>Risk</subject><subject>Risk Management</subject><subject>Science</subject><subject>Sorting algorithms</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Urban areas</subject><subject>Urbanization</subject><subject>Water management</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkL1PwzAQRy0EgvKxMSNLLCCR4rMTu2ZDFRQEEgvMxnYubaCJwU5A_e8JKjAw3fL09LtHyCGwMQcpzz9TN-YM5LiQaoOMQGuZaSX4JhkxrkQGnIsdspvSC2NMiZxtkx0-4SLnEzEiz5e0xU_aYLcIZViG-YpWIdLUR7-wcY401umVNra1c2yw7Wjd0j4621Ib0SZ64m1Cmrq-XF3QWWidLTPM7uxHn6ivu9XpPtmq7DLhwc_dI0_XV4_Tm-z-YXY7vbzPvADdZcMrDgpdQgEV954JxKqSovRKee4USuDO5oUArm3uvEDHnQQLeV5UzGon9sjJ2vsWw3uPqTNNnTwul7bF0CcDE8ULpdlEDujxP_Ql9LEd1hnQHECLQTtQZ2vKx5BSxMq8xbqxcWWAme_yZihvvsubofyAH_1Ie9dg-Qf_phZfvcN-AQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hooshyaripor, Farhad</creator><creator>Yazdi, Jafar</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><author>Hooshyaripor, Farhad ; Yazdi, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cities</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Financing</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Floods</topic><topic>Genetic algorithms</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Investment</topic><topic>Iran</topic><topic>Loads (forces)</topic><topic>Manholes</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Ponds</topic><topic>Rain</topic><topic>Retention basins</topic><topic>Risk</topic><topic>Risk Management</topic><topic>Science</topic><topic>Sorting algorithms</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Urban areas</topic><topic>Urbanization</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooshyaripor, Farhad</creatorcontrib><creatorcontrib>Yazdi, Jafar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooshyaripor, Farhad</au><au>Yazdi, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>75</volume><issue>3-4</issue><spage>823</spage><epage>832</epage><pages>823-832</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>28234283</pmid><doi>10.2166/wst.2016.567</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2017-02, Vol.75 (3-4), p.823-832 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1872579086 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cities Classification Computer simulation Financing Flood control Flood management Floods Genetic algorithms Hydrologic models Hydrology Investment Iran Loads (forces) Manholes Mathematical models Models, Theoretical Multiple objective analysis Optimization Pareto optimum Ponds Rain Retention basins Risk Risk Management Science Sorting algorithms Stormwater Stormwater management Urban areas Urbanization Water management |
title | A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20methodology%20for%20surcharge%20risk%20management%20in%20urban%20areas%20(case%20study:%20Gonbad-e-Kavus%20city)&rft.jtitle=Water%20science%20and%20technology&rft.au=Hooshyaripor,%20Farhad&rft.date=2017-02-01&rft.volume=75&rft.issue=3-4&rft.spage=823&rft.epage=832&rft.pages=823-832&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2016.567&rft_dat=%3Cproquest_cross%3E1921193144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1921193144&rft_id=info:pmid/28234283&rfr_iscdi=true |