A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)

This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2017-02, Vol.75 (3-4), p.823-832
Hauptverfasser: Hooshyaripor, Farhad, Yazdi, Jafar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 3-4
container_start_page 823
container_title Water science and technology
container_volume 75
creator Hooshyaripor, Farhad
Yazdi, Jafar
description This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.
doi_str_mv 10.2166/wst.2016.567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872579086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921193144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQRy0EgvKxMSNLLCCR4rMTu2ZDFRQEEgvMxnYubaCJwU5A_e8JKjAw3fL09LtHyCGwMQcpzz9TN-YM5LiQaoOMQGuZaSX4JhkxrkQGnIsdspvSC2NMiZxtkx0-4SLnEzEiz5e0xU_aYLcIZViG-YpWIdLUR7-wcY401umVNra1c2yw7Wjd0j4621Ib0SZ64m1Cmrq-XF3QWWidLTPM7uxHn6ivu9XpPtmq7DLhwc_dI0_XV4_Tm-z-YXY7vbzPvADdZcMrDgpdQgEV954JxKqSovRKee4USuDO5oUArm3uvEDHnQQLeV5UzGon9sjJ2vsWw3uPqTNNnTwul7bF0CcDE8ULpdlEDujxP_Ql9LEd1hnQHECLQTtQZ2vKx5BSxMq8xbqxcWWAme_yZihvvsubofyAH_1Ie9dg-Qf_phZfvcN-AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921193144</pqid></control><display><type>article</type><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hooshyaripor, Farhad ; Yazdi, Jafar</creator><creatorcontrib>Hooshyaripor, Farhad ; Yazdi, Jafar</creatorcontrib><description>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2016.567</identifier><identifier>PMID: 28234283</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Algorithms ; Cities ; Classification ; Computer simulation ; Financing ; Flood control ; Flood management ; Floods ; Genetic algorithms ; Hydrologic models ; Hydrology ; Investment ; Iran ; Loads (forces) ; Manholes ; Mathematical models ; Models, Theoretical ; Multiple objective analysis ; Optimization ; Pareto optimum ; Ponds ; Rain ; Retention basins ; Risk ; Risk Management ; Science ; Sorting algorithms ; Stormwater ; Stormwater management ; Urban areas ; Urbanization ; Water management</subject><ispartof>Water science and technology, 2017-02, Vol.75 (3-4), p.823-832</ispartof><rights>Copyright IWA Publishing Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</citedby><cites>FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hooshyaripor, Farhad</creatorcontrib><creatorcontrib>Yazdi, Jafar</creatorcontrib><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</description><subject>Algorithms</subject><subject>Cities</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Financing</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Floods</subject><subject>Genetic algorithms</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Investment</subject><subject>Iran</subject><subject>Loads (forces)</subject><subject>Manholes</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Ponds</subject><subject>Rain</subject><subject>Retention basins</subject><subject>Risk</subject><subject>Risk Management</subject><subject>Science</subject><subject>Sorting algorithms</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Urban areas</subject><subject>Urbanization</subject><subject>Water management</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkL1PwzAQRy0EgvKxMSNLLCCR4rMTu2ZDFRQEEgvMxnYubaCJwU5A_e8JKjAw3fL09LtHyCGwMQcpzz9TN-YM5LiQaoOMQGuZaSX4JhkxrkQGnIsdspvSC2NMiZxtkx0-4SLnEzEiz5e0xU_aYLcIZViG-YpWIdLUR7-wcY401umVNra1c2yw7Wjd0j4621Ib0SZ64m1Cmrq-XF3QWWidLTPM7uxHn6ivu9XpPtmq7DLhwc_dI0_XV4_Tm-z-YXY7vbzPvADdZcMrDgpdQgEV954JxKqSovRKee4USuDO5oUArm3uvEDHnQQLeV5UzGon9sjJ2vsWw3uPqTNNnTwul7bF0CcDE8ULpdlEDujxP_Ql9LEd1hnQHECLQTtQZ2vKx5BSxMq8xbqxcWWAme_yZihvvsubofyAH_1Ie9dg-Qf_phZfvcN-AQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hooshyaripor, Farhad</creator><creator>Yazdi, Jafar</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</title><author>Hooshyaripor, Farhad ; Yazdi, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-216b159d151f2cc03eeff63dc77c2b7e612ba453129a4bc3eb2b61a1445f0a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cities</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Financing</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Floods</topic><topic>Genetic algorithms</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Investment</topic><topic>Iran</topic><topic>Loads (forces)</topic><topic>Manholes</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Ponds</topic><topic>Rain</topic><topic>Retention basins</topic><topic>Risk</topic><topic>Risk Management</topic><topic>Science</topic><topic>Sorting algorithms</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Urban areas</topic><topic>Urbanization</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooshyaripor, Farhad</creatorcontrib><creatorcontrib>Yazdi, Jafar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooshyaripor, Farhad</au><au>Yazdi, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>75</volume><issue>3-4</issue><spage>823</spage><epage>832</epage><pages>823-832</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>28234283</pmid><doi>10.2166/wst.2016.567</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2017-02, Vol.75 (3-4), p.823-832
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_1872579086
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cities
Classification
Computer simulation
Financing
Flood control
Flood management
Floods
Genetic algorithms
Hydrologic models
Hydrology
Investment
Iran
Loads (forces)
Manholes
Mathematical models
Models, Theoretical
Multiple objective analysis
Optimization
Pareto optimum
Ponds
Rain
Retention basins
Risk
Risk Management
Science
Sorting algorithms
Stormwater
Stormwater management
Urban areas
Urbanization
Water management
title A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20methodology%20for%20surcharge%20risk%20management%20in%20urban%20areas%20(case%20study:%20Gonbad-e-Kavus%20city)&rft.jtitle=Water%20science%20and%20technology&rft.au=Hooshyaripor,%20Farhad&rft.date=2017-02-01&rft.volume=75&rft.issue=3-4&rft.spage=823&rft.epage=832&rft.pages=823-832&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2016.567&rft_dat=%3Cproquest_cross%3E1921193144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1921193144&rft_id=info:pmid/28234283&rfr_iscdi=true