Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A

The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2017-05, Vol.253, p.1-10
Hauptverfasser: Schuster, Tilman, Mühlstein, Astrid, Yaghootfam, Claudia, Maksimenko, Olga, Shipulo, Elena, Gelperina, Svetlana, Kreuter, Jörg, Gieselmann, Volkmar, Matzner, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Journal of controlled release
container_volume 253
creator Schuster, Tilman
Mühlstein, Astrid
Yaghootfam, Claudia
Maksimenko, Olga
Shipulo, Elena
Gelperina, Svetlana
Kreuter, Jörg
Gieselmann, Volkmar
Matzner, Ulrich
description The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells. [Display omitted]
doi_str_mv 10.1016/j.jconrel.2017.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1870645352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365917300792</els_id><sourcerecordid>1870645352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</originalsourceid><addsrcrecordid>eNqFkE1r3DAYhEVpabZJfkKCj73Y1bflUwkhbQqB9pAeehKy9Aq0aK2tJC_k30fLbnvNSTDMaOZ9ELoheCCYyC_bYWvTkiEOFJNxwHRo6ju0IWpkPZ8m8R5tmqJ6JsV0gT6VssUYC8bHj-iCKkqElGqD_vxKFZYaTOyS78qavbHVLLW3yVRw3WKWtDe5BhuhdDV1YbfP6QDdnE1YOgcxHCC_HMMmv8SyRm-qKdDdXaEP3sQC1-f3Ev3-9vB8_9g__fz-4_7uqbcc09bjHBBOfRsmraRKtNFSWcJmIrifxMhH5SY-U6Nmq_zMGFMcC2-5l8TZiV2iz6d_266_K5Sqd6FYiNEskNaiGxAsuWCCNqs4WW1OpWTwep_Dru3WBOsjVb3VZ6r6SFVjqpvacrfninXegfuf-oexGb6eDNAOPQTIutgAiwUXMtiqXQpvVLwCZ7GMHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870645352</pqid></control><display><type>article</type><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</creator><creatorcontrib>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</creatorcontrib><description>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells. [Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2017.02.016</identifier><identifier>PMID: 28215668</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Avidin - chemistry ; Biotinylation ; Blood-brain barrier ; Brain - metabolism ; Cerebroside-Sulfatase - administration &amp; dosage ; Cerebroside-Sulfatase - chemistry ; Cerebroside-Sulfatase - genetics ; Cerebroside-Sulfatase - pharmacokinetics ; Enzyme replacement therapy ; Female ; Lactic Acid - chemistry ; Leukodystrophy, Metachromatic - drug therapy ; Leukodystrophy, Metachromatic - metabolism ; Lysosomal storage disease ; Metachromatic leukodystrophy ; Mice, Knockout ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Poloxamer - administration &amp; dosage ; Poloxamer - chemistry ; Poloxamer - pharmacokinetics ; Polyesters - chemistry ; Polyglycolic Acid - chemistry ; Polymeric nanoparticles ; Polysorbates - administration &amp; dosage ; Polysorbates - chemistry ; Polysorbates - pharmacokinetics ; Serum Albumin, Human - chemistry ; Surface-Active Agents - administration &amp; dosage ; Surface-Active Agents - chemistry ; Surface-Active Agents - pharmacokinetics ; Surfactant coating</subject><ispartof>Journal of controlled release, 2017-05, Vol.253, p.1-10</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</citedby><cites>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</cites><orcidid>0000-0003-1113-6715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168365917300792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28215668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuster, Tilman</creatorcontrib><creatorcontrib>Mühlstein, Astrid</creatorcontrib><creatorcontrib>Yaghootfam, Claudia</creatorcontrib><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gieselmann, Volkmar</creatorcontrib><creatorcontrib>Matzner, Ulrich</creatorcontrib><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells. [Display omitted]</description><subject>Animals</subject><subject>Avidin - chemistry</subject><subject>Biotinylation</subject><subject>Blood-brain barrier</subject><subject>Brain - metabolism</subject><subject>Cerebroside-Sulfatase - administration &amp; dosage</subject><subject>Cerebroside-Sulfatase - chemistry</subject><subject>Cerebroside-Sulfatase - genetics</subject><subject>Cerebroside-Sulfatase - pharmacokinetics</subject><subject>Enzyme replacement therapy</subject><subject>Female</subject><subject>Lactic Acid - chemistry</subject><subject>Leukodystrophy, Metachromatic - drug therapy</subject><subject>Leukodystrophy, Metachromatic - metabolism</subject><subject>Lysosomal storage disease</subject><subject>Metachromatic leukodystrophy</subject><subject>Mice, Knockout</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Poloxamer - administration &amp; dosage</subject><subject>Poloxamer - chemistry</subject><subject>Poloxamer - pharmacokinetics</subject><subject>Polyesters - chemistry</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymeric nanoparticles</subject><subject>Polysorbates - administration &amp; dosage</subject><subject>Polysorbates - chemistry</subject><subject>Polysorbates - pharmacokinetics</subject><subject>Serum Albumin, Human - chemistry</subject><subject>Surface-Active Agents - administration &amp; dosage</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - pharmacokinetics</subject><subject>Surfactant coating</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAYhEVpabZJfkKCj73Y1bflUwkhbQqB9pAeehKy9Aq0aK2tJC_k30fLbnvNSTDMaOZ9ELoheCCYyC_bYWvTkiEOFJNxwHRo6ju0IWpkPZ8m8R5tmqJ6JsV0gT6VssUYC8bHj-iCKkqElGqD_vxKFZYaTOyS78qavbHVLLW3yVRw3WKWtDe5BhuhdDV1YbfP6QDdnE1YOgcxHCC_HMMmv8SyRm-qKdDdXaEP3sQC1-f3Ev3-9vB8_9g__fz-4_7uqbcc09bjHBBOfRsmraRKtNFSWcJmIrifxMhH5SY-U6Nmq_zMGFMcC2-5l8TZiV2iz6d_266_K5Sqd6FYiNEskNaiGxAsuWCCNqs4WW1OpWTwep_Dru3WBOsjVb3VZ6r6SFVjqpvacrfninXegfuf-oexGb6eDNAOPQTIutgAiwUXMtiqXQpvVLwCZ7GMHw</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Schuster, Tilman</creator><creator>Mühlstein, Astrid</creator><creator>Yaghootfam, Claudia</creator><creator>Maksimenko, Olga</creator><creator>Shipulo, Elena</creator><creator>Gelperina, Svetlana</creator><creator>Kreuter, Jörg</creator><creator>Gieselmann, Volkmar</creator><creator>Matzner, Ulrich</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></search><sort><creationdate>20170510</creationdate><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><author>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Avidin - chemistry</topic><topic>Biotinylation</topic><topic>Blood-brain barrier</topic><topic>Brain - metabolism</topic><topic>Cerebroside-Sulfatase - administration &amp; dosage</topic><topic>Cerebroside-Sulfatase - chemistry</topic><topic>Cerebroside-Sulfatase - genetics</topic><topic>Cerebroside-Sulfatase - pharmacokinetics</topic><topic>Enzyme replacement therapy</topic><topic>Female</topic><topic>Lactic Acid - chemistry</topic><topic>Leukodystrophy, Metachromatic - drug therapy</topic><topic>Leukodystrophy, Metachromatic - metabolism</topic><topic>Lysosomal storage disease</topic><topic>Metachromatic leukodystrophy</topic><topic>Mice, Knockout</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Poloxamer - administration &amp; dosage</topic><topic>Poloxamer - chemistry</topic><topic>Poloxamer - pharmacokinetics</topic><topic>Polyesters - chemistry</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymeric nanoparticles</topic><topic>Polysorbates - administration &amp; dosage</topic><topic>Polysorbates - chemistry</topic><topic>Polysorbates - pharmacokinetics</topic><topic>Serum Albumin, Human - chemistry</topic><topic>Surface-Active Agents - administration &amp; dosage</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - pharmacokinetics</topic><topic>Surfactant coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuster, Tilman</creatorcontrib><creatorcontrib>Mühlstein, Astrid</creatorcontrib><creatorcontrib>Yaghootfam, Claudia</creatorcontrib><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gieselmann, Volkmar</creatorcontrib><creatorcontrib>Matzner, Ulrich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuster, Tilman</au><au>Mühlstein, Astrid</au><au>Yaghootfam, Claudia</au><au>Maksimenko, Olga</au><au>Shipulo, Elena</au><au>Gelperina, Svetlana</au><au>Kreuter, Jörg</au><au>Gieselmann, Volkmar</au><au>Matzner, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>253</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><abstract>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28215668</pmid><doi>10.1016/j.jconrel.2017.02.016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-3659
ispartof Journal of controlled release, 2017-05, Vol.253, p.1-10
issn 0168-3659
1873-4995
language eng
recordid cdi_proquest_miscellaneous_1870645352
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Avidin - chemistry
Biotinylation
Blood-brain barrier
Brain - metabolism
Cerebroside-Sulfatase - administration & dosage
Cerebroside-Sulfatase - chemistry
Cerebroside-Sulfatase - genetics
Cerebroside-Sulfatase - pharmacokinetics
Enzyme replacement therapy
Female
Lactic Acid - chemistry
Leukodystrophy, Metachromatic - drug therapy
Leukodystrophy, Metachromatic - metabolism
Lysosomal storage disease
Metachromatic leukodystrophy
Mice, Knockout
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Poloxamer - administration & dosage
Poloxamer - chemistry
Poloxamer - pharmacokinetics
Polyesters - chemistry
Polyglycolic Acid - chemistry
Polymeric nanoparticles
Polysorbates - administration & dosage
Polysorbates - chemistry
Polysorbates - pharmacokinetics
Serum Albumin, Human - chemistry
Surface-Active Agents - administration & dosage
Surface-Active Agents - chemistry
Surface-Active Agents - pharmacokinetics
Surfactant coating
title Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20surfactant-coated%20nanoparticles%20to%20improve%20brain%20delivery%20of%20arylsulfatase%20A&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Schuster,%20Tilman&rft.date=2017-05-10&rft.volume=253&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2017.02.016&rft_dat=%3Cproquest_cross%3E1870645352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870645352&rft_id=info:pmid/28215668&rft_els_id=S0168365917300792&rfr_iscdi=true