Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A
The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and pr...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2017-05, Vol.253, p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of controlled release |
container_volume | 253 |
creator | Schuster, Tilman Mühlstein, Astrid Yaghootfam, Claudia Maksimenko, Olga Shipulo, Elena Gelperina, Svetlana Kreuter, Jörg Gieselmann, Volkmar Matzner, Ulrich |
description | The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.
[Display omitted] |
doi_str_mv | 10.1016/j.jconrel.2017.02.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1870645352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365917300792</els_id><sourcerecordid>1870645352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</originalsourceid><addsrcrecordid>eNqFkE1r3DAYhEVpabZJfkKCj73Y1bflUwkhbQqB9pAeehKy9Aq0aK2tJC_k30fLbnvNSTDMaOZ9ELoheCCYyC_bYWvTkiEOFJNxwHRo6ju0IWpkPZ8m8R5tmqJ6JsV0gT6VssUYC8bHj-iCKkqElGqD_vxKFZYaTOyS78qavbHVLLW3yVRw3WKWtDe5BhuhdDV1YbfP6QDdnE1YOgcxHCC_HMMmv8SyRm-qKdDdXaEP3sQC1-f3Ev3-9vB8_9g__fz-4_7uqbcc09bjHBBOfRsmraRKtNFSWcJmIrifxMhH5SY-U6Nmq_zMGFMcC2-5l8TZiV2iz6d_266_K5Sqd6FYiNEskNaiGxAsuWCCNqs4WW1OpWTwep_Dru3WBOsjVb3VZ6r6SFVjqpvacrfninXegfuf-oexGb6eDNAOPQTIutgAiwUXMtiqXQpvVLwCZ7GMHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870645352</pqid></control><display><type>article</type><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</creator><creatorcontrib>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</creatorcontrib><description>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.
[Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2017.02.016</identifier><identifier>PMID: 28215668</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Avidin - chemistry ; Biotinylation ; Blood-brain barrier ; Brain - metabolism ; Cerebroside-Sulfatase - administration & dosage ; Cerebroside-Sulfatase - chemistry ; Cerebroside-Sulfatase - genetics ; Cerebroside-Sulfatase - pharmacokinetics ; Enzyme replacement therapy ; Female ; Lactic Acid - chemistry ; Leukodystrophy, Metachromatic - drug therapy ; Leukodystrophy, Metachromatic - metabolism ; Lysosomal storage disease ; Metachromatic leukodystrophy ; Mice, Knockout ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Poloxamer - administration & dosage ; Poloxamer - chemistry ; Poloxamer - pharmacokinetics ; Polyesters - chemistry ; Polyglycolic Acid - chemistry ; Polymeric nanoparticles ; Polysorbates - administration & dosage ; Polysorbates - chemistry ; Polysorbates - pharmacokinetics ; Serum Albumin, Human - chemistry ; Surface-Active Agents - administration & dosage ; Surface-Active Agents - chemistry ; Surface-Active Agents - pharmacokinetics ; Surfactant coating</subject><ispartof>Journal of controlled release, 2017-05, Vol.253, p.1-10</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</citedby><cites>FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</cites><orcidid>0000-0003-1113-6715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168365917300792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28215668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuster, Tilman</creatorcontrib><creatorcontrib>Mühlstein, Astrid</creatorcontrib><creatorcontrib>Yaghootfam, Claudia</creatorcontrib><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gieselmann, Volkmar</creatorcontrib><creatorcontrib>Matzner, Ulrich</creatorcontrib><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.
[Display omitted]</description><subject>Animals</subject><subject>Avidin - chemistry</subject><subject>Biotinylation</subject><subject>Blood-brain barrier</subject><subject>Brain - metabolism</subject><subject>Cerebroside-Sulfatase - administration & dosage</subject><subject>Cerebroside-Sulfatase - chemistry</subject><subject>Cerebroside-Sulfatase - genetics</subject><subject>Cerebroside-Sulfatase - pharmacokinetics</subject><subject>Enzyme replacement therapy</subject><subject>Female</subject><subject>Lactic Acid - chemistry</subject><subject>Leukodystrophy, Metachromatic - drug therapy</subject><subject>Leukodystrophy, Metachromatic - metabolism</subject><subject>Lysosomal storage disease</subject><subject>Metachromatic leukodystrophy</subject><subject>Mice, Knockout</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Poloxamer - administration & dosage</subject><subject>Poloxamer - chemistry</subject><subject>Poloxamer - pharmacokinetics</subject><subject>Polyesters - chemistry</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polymeric nanoparticles</subject><subject>Polysorbates - administration & dosage</subject><subject>Polysorbates - chemistry</subject><subject>Polysorbates - pharmacokinetics</subject><subject>Serum Albumin, Human - chemistry</subject><subject>Surface-Active Agents - administration & dosage</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - pharmacokinetics</subject><subject>Surfactant coating</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAYhEVpabZJfkKCj73Y1bflUwkhbQqB9pAeehKy9Aq0aK2tJC_k30fLbnvNSTDMaOZ9ELoheCCYyC_bYWvTkiEOFJNxwHRo6ju0IWpkPZ8m8R5tmqJ6JsV0gT6VssUYC8bHj-iCKkqElGqD_vxKFZYaTOyS78qavbHVLLW3yVRw3WKWtDe5BhuhdDV1YbfP6QDdnE1YOgcxHCC_HMMmv8SyRm-qKdDdXaEP3sQC1-f3Ev3-9vB8_9g__fz-4_7uqbcc09bjHBBOfRsmraRKtNFSWcJmIrifxMhH5SY-U6Nmq_zMGFMcC2-5l8TZiV2iz6d_266_K5Sqd6FYiNEskNaiGxAsuWCCNqs4WW1OpWTwep_Dru3WBOsjVb3VZ6r6SFVjqpvacrfninXegfuf-oexGb6eDNAOPQTIutgAiwUXMtiqXQpvVLwCZ7GMHw</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Schuster, Tilman</creator><creator>Mühlstein, Astrid</creator><creator>Yaghootfam, Claudia</creator><creator>Maksimenko, Olga</creator><creator>Shipulo, Elena</creator><creator>Gelperina, Svetlana</creator><creator>Kreuter, Jörg</creator><creator>Gieselmann, Volkmar</creator><creator>Matzner, Ulrich</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></search><sort><creationdate>20170510</creationdate><title>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</title><author>Schuster, Tilman ; Mühlstein, Astrid ; Yaghootfam, Claudia ; Maksimenko, Olga ; Shipulo, Elena ; Gelperina, Svetlana ; Kreuter, Jörg ; Gieselmann, Volkmar ; Matzner, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cdde142f3476c628501668c13b154f957478d94b2a8bc8fb3338405fc4f61dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Avidin - chemistry</topic><topic>Biotinylation</topic><topic>Blood-brain barrier</topic><topic>Brain - metabolism</topic><topic>Cerebroside-Sulfatase - administration & dosage</topic><topic>Cerebroside-Sulfatase - chemistry</topic><topic>Cerebroside-Sulfatase - genetics</topic><topic>Cerebroside-Sulfatase - pharmacokinetics</topic><topic>Enzyme replacement therapy</topic><topic>Female</topic><topic>Lactic Acid - chemistry</topic><topic>Leukodystrophy, Metachromatic - drug therapy</topic><topic>Leukodystrophy, Metachromatic - metabolism</topic><topic>Lysosomal storage disease</topic><topic>Metachromatic leukodystrophy</topic><topic>Mice, Knockout</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Poloxamer - administration & dosage</topic><topic>Poloxamer - chemistry</topic><topic>Poloxamer - pharmacokinetics</topic><topic>Polyesters - chemistry</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polymeric nanoparticles</topic><topic>Polysorbates - administration & dosage</topic><topic>Polysorbates - chemistry</topic><topic>Polysorbates - pharmacokinetics</topic><topic>Serum Albumin, Human - chemistry</topic><topic>Surface-Active Agents - administration & dosage</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - pharmacokinetics</topic><topic>Surfactant coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuster, Tilman</creatorcontrib><creatorcontrib>Mühlstein, Astrid</creatorcontrib><creatorcontrib>Yaghootfam, Claudia</creatorcontrib><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gieselmann, Volkmar</creatorcontrib><creatorcontrib>Matzner, Ulrich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuster, Tilman</au><au>Mühlstein, Astrid</au><au>Yaghootfam, Claudia</au><au>Maksimenko, Olga</au><au>Shipulo, Elena</au><au>Gelperina, Svetlana</au><au>Kreuter, Jörg</au><au>Gieselmann, Volkmar</au><au>Matzner, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>253</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><abstract>The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA−/− mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28215668</pmid><doi>10.1016/j.jconrel.2017.02.016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-3659 |
ispartof | Journal of controlled release, 2017-05, Vol.253, p.1-10 |
issn | 0168-3659 1873-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1870645352 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Avidin - chemistry Biotinylation Blood-brain barrier Brain - metabolism Cerebroside-Sulfatase - administration & dosage Cerebroside-Sulfatase - chemistry Cerebroside-Sulfatase - genetics Cerebroside-Sulfatase - pharmacokinetics Enzyme replacement therapy Female Lactic Acid - chemistry Leukodystrophy, Metachromatic - drug therapy Leukodystrophy, Metachromatic - metabolism Lysosomal storage disease Metachromatic leukodystrophy Mice, Knockout Nanoparticles - administration & dosage Nanoparticles - chemistry Poloxamer - administration & dosage Poloxamer - chemistry Poloxamer - pharmacokinetics Polyesters - chemistry Polyglycolic Acid - chemistry Polymeric nanoparticles Polysorbates - administration & dosage Polysorbates - chemistry Polysorbates - pharmacokinetics Serum Albumin, Human - chemistry Surface-Active Agents - administration & dosage Surface-Active Agents - chemistry Surface-Active Agents - pharmacokinetics Surfactant coating |
title | Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20surfactant-coated%20nanoparticles%20to%20improve%20brain%20delivery%20of%20arylsulfatase%20A&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Schuster,%20Tilman&rft.date=2017-05-10&rft.volume=253&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2017.02.016&rft_dat=%3Cproquest_cross%3E1870645352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870645352&rft_id=info:pmid/28215668&rft_els_id=S0168365917300792&rfr_iscdi=true |