Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays

Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK 1 School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK 2 Department of Medical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2002-10, Vol.148 (10), p.3129-3138
Hauptverfasser: Stewart, Graham R, Wernisch, Lorenz, Stabler, Richard, Mangan, Joseph A, Hinds, Jason, Laing, Ken G, Young, Douglas B, Butcher, Philip D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3138
container_issue 10
container_start_page 3129
container_title Microbiology (Society for General Microbiology)
container_volume 148
creator Stewart, Graham R
Wernisch, Lorenz
Stabler, Richard
Mangan, Joseph A
Hinds, Jason
Laing, Ken G
Young, Douglas B
Butcher, Philip D
description Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK 1 School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK 2 Department of Medical Microbiology, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK 3 Author for correspondence: Graham Stewart. Tel: +44 207 594 3090. Fax: +44 207 594 3095. e-mail: g.stewart{at}ic.ac.uk Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis . The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis . Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass -crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress. Keywords: HspR, HrcA, Hsp70, Hsp60, transcriptional regulator Abbreviations: ADC, albumin/dextrose (glucose)/catalase; CIRCE, controlling inverted repeat of chaperone expression; HAIR, HspR-associated inverted repeat; OADC, oleic acid/dextrose (glucose)/albumin/catalase a A list of the 100 ORFs most highly induced by heat shock is provided as supplementary data with the online version of this paper (http://mic.sgmjournals.org).
doi_str_mv 10.1099/00221287-148-10-3129
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_18702898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18702898</sourcerecordid><originalsourceid>FETCH-LOGICAL-h188t-e0a9ee0e7a02ea02849a1da9ecbcafd669e8bc3abde05a131181e3e65c43900c3</originalsourceid><addsrcrecordid>eNo1kE1PwzAMhiMEYmPwDxDKiQNSwG66Lj2i8SkNcYFzlabeGlibkaRC-_cENg6WLfvRI_ll7BzhGqEsbwCyDDM1E5grgSAkZuUBG2NeTEUGCg7TLKcgQM2yETsJ4QMgHQGP2QgzWag8L8ZM39kQyETreu6WPLbEW9JRhNaZT-4pbFwfiNuev2yNq7WJ5O3Q8TjU5M2wdsEGPgTbr3g3RN3HwHXf8M4a77T3ehtO2dFSrwOd7fuEvT_cv82fxOL18Xl-uxAtKhUFgS6JgGYaMkql8lJjk3amNnrZFEVJqjZS1w3BVKNEVEiSiqnJZQlg5IRd7rwb774GCrHqbDC0Xuue3BAqVLNkLVUCL_bgUHfUVBtvO-231X8oCbjaAa1dtd_WU7Wi_u-j2rpkNSnxCqH6TVz-AFXsdag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18702898</pqid></control><display><type>article</type><title>Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays</title><source>MEDLINE</source><source>PubMed Central</source><creator>Stewart, Graham R ; Wernisch, Lorenz ; Stabler, Richard ; Mangan, Joseph A ; Hinds, Jason ; Laing, Ken G ; Young, Douglas B ; Butcher, Philip D</creator><creatorcontrib>Stewart, Graham R ; Wernisch, Lorenz ; Stabler, Richard ; Mangan, Joseph A ; Hinds, Jason ; Laing, Ken G ; Young, Douglas B ; Butcher, Philip D</creatorcontrib><description>Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK 1 School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK 2 Department of Medical Microbiology, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK 3 Author for correspondence: Graham Stewart. Tel: +44 207 594 3090. Fax: +44 207 594 3095. e-mail: g.stewart{at}ic.ac.uk Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis . The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis . Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass -crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress. Keywords: HspR, HrcA, Hsp70, Hsp60, transcriptional regulator Abbreviations: ADC, albumin/dextrose (glucose)/catalase; CIRCE, controlling inverted repeat of chaperone expression; HAIR, HspR-associated inverted repeat; OADC, oleic acid/dextrose (glucose)/albumin/catalase a A list of the 100 ORFs most highly induced by heat shock is provided as supplementary data with the online version of this paper (http://mic.sgmjournals.org).</description><identifier>ISSN: 1350-0872</identifier><identifier>EISSN: 1465-2080</identifier><identifier>DOI: 10.1099/00221287-148-10-3129</identifier><identifier>PMID: 12368446</identifier><language>eng</language><publisher>England: Soc General Microbiol</publisher><subject>alpha -crystallin ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; DNA-Binding Proteins ; DnaK gene ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; HrcA gene ; Hsp60 protein ; Hsp70 gene ; Humans ; Molecular Sequence Data ; Mutation ; Mycobacterium bovis ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - physiology ; Oligonucleotide Array Sequence Analysis ; Regulon ; regulons ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Transcription, Genetic</subject><ispartof>Microbiology (Society for General Microbiology), 2002-10, Vol.148 (10), p.3129-3138</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12368446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stewart, Graham R</creatorcontrib><creatorcontrib>Wernisch, Lorenz</creatorcontrib><creatorcontrib>Stabler, Richard</creatorcontrib><creatorcontrib>Mangan, Joseph A</creatorcontrib><creatorcontrib>Hinds, Jason</creatorcontrib><creatorcontrib>Laing, Ken G</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Butcher, Philip D</creatorcontrib><title>Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays</title><title>Microbiology (Society for General Microbiology)</title><addtitle>Microbiology</addtitle><description>Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK 1 School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK 2 Department of Medical Microbiology, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK 3 Author for correspondence: Graham Stewart. Tel: +44 207 594 3090. Fax: +44 207 594 3095. e-mail: g.stewart{at}ic.ac.uk Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis . The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis . Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass -crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress. Keywords: HspR, HrcA, Hsp70, Hsp60, transcriptional regulator Abbreviations: ADC, albumin/dextrose (glucose)/catalase; CIRCE, controlling inverted repeat of chaperone expression; HAIR, HspR-associated inverted repeat; OADC, oleic acid/dextrose (glucose)/albumin/catalase a A list of the 100 ORFs most highly induced by heat shock is provided as supplementary data with the online version of this paper (http://mic.sgmjournals.org).</description><subject>alpha -crystallin</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA-Binding Proteins</subject><subject>DnaK gene</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>HrcA gene</subject><subject>Hsp60 protein</subject><subject>Hsp70 gene</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Mycobacterium bovis</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Regulon</subject><subject>regulons</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcription, Genetic</subject><issn>1350-0872</issn><issn>1465-2080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1PwzAMhiMEYmPwDxDKiQNSwG66Lj2i8SkNcYFzlabeGlibkaRC-_cENg6WLfvRI_ll7BzhGqEsbwCyDDM1E5grgSAkZuUBG2NeTEUGCg7TLKcgQM2yETsJ4QMgHQGP2QgzWag8L8ZM39kQyETreu6WPLbEW9JRhNaZT-4pbFwfiNuev2yNq7WJ5O3Q8TjU5M2wdsEGPgTbr3g3RN3HwHXf8M4a77T3ehtO2dFSrwOd7fuEvT_cv82fxOL18Xl-uxAtKhUFgS6JgGYaMkql8lJjk3amNnrZFEVJqjZS1w3BVKNEVEiSiqnJZQlg5IRd7rwb774GCrHqbDC0Xuue3BAqVLNkLVUCL_bgUHfUVBtvO-231X8oCbjaAa1dtd_WU7Wi_u-j2rpkNSnxCqH6TVz-AFXsdag</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Stewart, Graham R</creator><creator>Wernisch, Lorenz</creator><creator>Stabler, Richard</creator><creator>Mangan, Joseph A</creator><creator>Hinds, Jason</creator><creator>Laing, Ken G</creator><creator>Young, Douglas B</creator><creator>Butcher, Philip D</creator><general>Soc General Microbiol</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>200210</creationdate><title>Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays</title><author>Stewart, Graham R ; Wernisch, Lorenz ; Stabler, Richard ; Mangan, Joseph A ; Hinds, Jason ; Laing, Ken G ; Young, Douglas B ; Butcher, Philip D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h188t-e0a9ee0e7a02ea02849a1da9ecbcafd669e8bc3abde05a131181e3e65c43900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>alpha -crystallin</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA-Binding Proteins</topic><topic>DnaK gene</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>HrcA gene</topic><topic>Hsp60 protein</topic><topic>Hsp70 gene</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Mycobacterium bovis</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Regulon</topic><topic>regulons</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, Graham R</creatorcontrib><creatorcontrib>Wernisch, Lorenz</creatorcontrib><creatorcontrib>Stabler, Richard</creatorcontrib><creatorcontrib>Mangan, Joseph A</creatorcontrib><creatorcontrib>Hinds, Jason</creatorcontrib><creatorcontrib>Laing, Ken G</creatorcontrib><creatorcontrib>Young, Douglas B</creatorcontrib><creatorcontrib>Butcher, Philip D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Microbiology (Society for General Microbiology)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, Graham R</au><au>Wernisch, Lorenz</au><au>Stabler, Richard</au><au>Mangan, Joseph A</au><au>Hinds, Jason</au><au>Laing, Ken G</au><au>Young, Douglas B</au><au>Butcher, Philip D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays</atitle><jtitle>Microbiology (Society for General Microbiology)</jtitle><addtitle>Microbiology</addtitle><date>2002-10</date><risdate>2002</risdate><volume>148</volume><issue>10</issue><spage>3129</spage><epage>3138</epage><pages>3129-3138</pages><issn>1350-0872</issn><eissn>1465-2080</eissn><abstract>Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK 1 School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK 2 Department of Medical Microbiology, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK 3 Author for correspondence: Graham Stewart. Tel: +44 207 594 3090. Fax: +44 207 594 3095. e-mail: g.stewart{at}ic.ac.uk Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis . The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis . Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass -crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress. Keywords: HspR, HrcA, Hsp70, Hsp60, transcriptional regulator Abbreviations: ADC, albumin/dextrose (glucose)/catalase; CIRCE, controlling inverted repeat of chaperone expression; HAIR, HspR-associated inverted repeat; OADC, oleic acid/dextrose (glucose)/albumin/catalase a A list of the 100 ORFs most highly induced by heat shock is provided as supplementary data with the online version of this paper (http://mic.sgmjournals.org).</abstract><cop>England</cop><pub>Soc General Microbiol</pub><pmid>12368446</pmid><doi>10.1099/00221287-148-10-3129</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-0872
ispartof Microbiology (Society for General Microbiology), 2002-10, Vol.148 (10), p.3129-3138
issn 1350-0872
1465-2080
language eng
recordid cdi_proquest_miscellaneous_18702898
source MEDLINE; PubMed Central
subjects alpha -crystallin
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
DNA-Binding Proteins
DnaK gene
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Heat-Shock Response
HrcA gene
Hsp60 protein
Hsp70 gene
Humans
Molecular Sequence Data
Mutation
Mycobacterium bovis
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - physiology
Oligonucleotide Array Sequence Analysis
Regulon
regulons
Repressor Proteins - genetics
Repressor Proteins - metabolism
Transcription, Genetic
title Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissection%20of%20the%20heat-shock%20response%20in%20Mycobacterium%20tuberculosis%20using%20mutants%20and%20microarrays&rft.jtitle=Microbiology%20(Society%20for%20General%20Microbiology)&rft.au=Stewart,%20Graham%20R&rft.date=2002-10&rft.volume=148&rft.issue=10&rft.spage=3129&rft.epage=3138&rft.pages=3129-3138&rft.issn=1350-0872&rft.eissn=1465-2080&rft_id=info:doi/10.1099/00221287-148-10-3129&rft_dat=%3Cproquest_pubme%3E18702898%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18702898&rft_id=info:pmid/12368446&rfr_iscdi=true