Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images

In this paper, we have proposed a novel method, which utilizes the contextual relationship among visual words for reducing the quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques, which usually search new solutions by borrowing i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-08, Vol.26 (8), p.3896-3910
Hauptverfasser: Zhen-Qun Yang, Xiao-Yong Wei, Zhang Yi, Friedland, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3910
container_issue 8
container_start_page 3896
container_title IEEE transactions on image processing
container_volume 26
creator Zhen-Qun Yang
Xiao-Yong Wei
Zhang Yi
Friedland, Gerald
description In this paper, we have proposed a novel method, which utilizes the contextual relationship among visual words for reducing the quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques, which usually search new solutions by borrowing ideas from the text domain, we propose to model the problem back to image domain, which results in a more natural way of solution search. The idea of the proposed method is to construct a context graph that encapsulates the contextual relationship within an image and treat the graph as a pseudo-image, so that classical image filters can be adopted to reduce the mis-mapped visual words which are contextually inconsistent with others. With these contextual noises reduced, the method provides purified inputs to the subsequent processes in NDR, and improves the overall accuracy. More importantly, the purification further increases the sparsity of the image feature vectors, which thus speeds up the conventional methods by 1662% times and makes NDR practical to online applications on merchandize images where the requirement of response time is critical. The way of considering contextual noise reduction in image domain also makes the problem open to all sophisticated filters. Our study shows the classic anisotropic diffusion filter can be employed to address the cross-domain issue, resulting in the superiority of the method to conventional ones in both effectiveness and efficiency.
doi_str_mv 10.1109/TIP.2017.2669842
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1869972908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7857083</ieee_id><sourcerecordid>1869972908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4ce30317031320b371b69e59606e9e5521fb343dff7fe48bb438d79add1842d53</originalsourceid><addsrcrecordid>eNo9kMtLxDAQh4Morq-7IEiPXrpmkrRpjrLrY2FdRdajlLSZaqSPNWlF_evNsquHMIH5fjPMR8gp0DEAVZfL2eOYUZBjlqYqE2yHHIASEFMq2G7400TGEoQakUPv3ykFkUC6T0YsY8BolhyQl0nX9vjVD7qOFp31GD2hGcredm1UdS6ado22bXRl9Kq3nxgtULt4OqxqW-p-DffO4mcIB_4eXfmmW2N_MJo1-hX9MdmrdO3xZFuPyPPN9XJyF88fbmeTq3lcclB9LErklIMMjzNacAlFqjBRKU0x1IRBVXDBTVXJCkVWFIJnRiptDISjTcKPyMVm7sp1HwP6Pm-sL7GudYvd4HPIUqUkUzQLKN2gpeu8d1jlK2cb7b5zoPlaah6k5mup-VZqiJxvpw9Fg-Y_8GcxAGcbwCLif1tmiQwL-S976Xqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869972908</pqid></control><display><type>article</type><title>Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images</title><source>IEEE Electronic Library (IEL)</source><creator>Zhen-Qun Yang ; Xiao-Yong Wei ; Zhang Yi ; Friedland, Gerald</creator><creatorcontrib>Zhen-Qun Yang ; Xiao-Yong Wei ; Zhang Yi ; Friedland, Gerald</creatorcontrib><description>In this paper, we have proposed a novel method, which utilizes the contextual relationship among visual words for reducing the quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques, which usually search new solutions by borrowing ideas from the text domain, we propose to model the problem back to image domain, which results in a more natural way of solution search. The idea of the proposed method is to construct a context graph that encapsulates the contextual relationship within an image and treat the graph as a pseudo-image, so that classical image filters can be adopted to reduce the mis-mapped visual words which are contextually inconsistent with others. With these contextual noises reduced, the method provides purified inputs to the subsequent processes in NDR, and improves the overall accuracy. More importantly, the purification further increases the sparsity of the image feature vectors, which thus speeds up the conventional methods by 1662% times and makes NDR practical to online applications on merchandize images where the requirement of response time is critical. The way of considering contextual noise reduction in image domain also makes the problem open to all sophisticated filters. Our study shows the classic anisotropic diffusion filter can be employed to address the cross-domain issue, resulting in the superiority of the method to conventional ones in both effectiveness and efficiency.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2669842</identifier><identifier>PMID: 28212085</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>anisotropic diffusion ; Anisotropic magnetoresistance ; Context ; contextual noise reduction ; Indexing ; Lips ; Near-duplicate retrieval ; Noise reduction ; Quantization (signal) ; Visualization</subject><ispartof>IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3896-3910</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4ce30317031320b371b69e59606e9e5521fb343dff7fe48bb438d79add1842d53</citedby><cites>FETCH-LOGICAL-c319t-4ce30317031320b371b69e59606e9e5521fb343dff7fe48bb438d79add1842d53</cites><orcidid>0000-0002-5706-5177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7857083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7857083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28212085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhen-Qun Yang</creatorcontrib><creatorcontrib>Xiao-Yong Wei</creatorcontrib><creatorcontrib>Zhang Yi</creatorcontrib><creatorcontrib>Friedland, Gerald</creatorcontrib><title>Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we have proposed a novel method, which utilizes the contextual relationship among visual words for reducing the quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques, which usually search new solutions by borrowing ideas from the text domain, we propose to model the problem back to image domain, which results in a more natural way of solution search. The idea of the proposed method is to construct a context graph that encapsulates the contextual relationship within an image and treat the graph as a pseudo-image, so that classical image filters can be adopted to reduce the mis-mapped visual words which are contextually inconsistent with others. With these contextual noises reduced, the method provides purified inputs to the subsequent processes in NDR, and improves the overall accuracy. More importantly, the purification further increases the sparsity of the image feature vectors, which thus speeds up the conventional methods by 1662% times and makes NDR practical to online applications on merchandize images where the requirement of response time is critical. The way of considering contextual noise reduction in image domain also makes the problem open to all sophisticated filters. Our study shows the classic anisotropic diffusion filter can be employed to address the cross-domain issue, resulting in the superiority of the method to conventional ones in both effectiveness and efficiency.</description><subject>anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Context</subject><subject>contextual noise reduction</subject><subject>Indexing</subject><subject>Lips</subject><subject>Near-duplicate retrieval</subject><subject>Noise reduction</subject><subject>Quantization (signal)</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLxDAQh4Morq-7IEiPXrpmkrRpjrLrY2FdRdajlLSZaqSPNWlF_evNsquHMIH5fjPMR8gp0DEAVZfL2eOYUZBjlqYqE2yHHIASEFMq2G7400TGEoQakUPv3ykFkUC6T0YsY8BolhyQl0nX9vjVD7qOFp31GD2hGcredm1UdS6ado22bXRl9Kq3nxgtULt4OqxqW-p-DffO4mcIB_4eXfmmW2N_MJo1-hX9MdmrdO3xZFuPyPPN9XJyF88fbmeTq3lcclB9LErklIMMjzNacAlFqjBRKU0x1IRBVXDBTVXJCkVWFIJnRiptDISjTcKPyMVm7sp1HwP6Pm-sL7GudYvd4HPIUqUkUzQLKN2gpeu8d1jlK2cb7b5zoPlaah6k5mup-VZqiJxvpw9Fg-Y_8GcxAGcbwCLif1tmiQwL-S976Xqg</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Zhen-Qun Yang</creator><creator>Xiao-Yong Wei</creator><creator>Zhang Yi</creator><creator>Friedland, Gerald</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5706-5177</orcidid></search><sort><creationdate>201708</creationdate><title>Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images</title><author>Zhen-Qun Yang ; Xiao-Yong Wei ; Zhang Yi ; Friedland, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4ce30317031320b371b69e59606e9e5521fb343dff7fe48bb438d79add1842d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Context</topic><topic>contextual noise reduction</topic><topic>Indexing</topic><topic>Lips</topic><topic>Near-duplicate retrieval</topic><topic>Noise reduction</topic><topic>Quantization (signal)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen-Qun Yang</creatorcontrib><creatorcontrib>Xiao-Yong Wei</creatorcontrib><creatorcontrib>Zhang Yi</creatorcontrib><creatorcontrib>Friedland, Gerald</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhen-Qun Yang</au><au>Xiao-Yong Wei</au><au>Zhang Yi</au><au>Friedland, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>8</issue><spage>3896</spage><epage>3910</epage><pages>3896-3910</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we have proposed a novel method, which utilizes the contextual relationship among visual words for reducing the quantization errors in near-duplicate image retrieval (NDR). Instead of following the track of conventional NDR techniques, which usually search new solutions by borrowing ideas from the text domain, we propose to model the problem back to image domain, which results in a more natural way of solution search. The idea of the proposed method is to construct a context graph that encapsulates the contextual relationship within an image and treat the graph as a pseudo-image, so that classical image filters can be adopted to reduce the mis-mapped visual words which are contextually inconsistent with others. With these contextual noises reduced, the method provides purified inputs to the subsequent processes in NDR, and improves the overall accuracy. More importantly, the purification further increases the sparsity of the image feature vectors, which thus speeds up the conventional methods by 1662% times and makes NDR practical to online applications on merchandize images where the requirement of response time is critical. The way of considering contextual noise reduction in image domain also makes the problem open to all sophisticated filters. Our study shows the classic anisotropic diffusion filter can be employed to address the cross-domain issue, resulting in the superiority of the method to conventional ones in both effectiveness and efficiency.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28212085</pmid><doi>10.1109/TIP.2017.2669842</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5706-5177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3896-3910
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1869972908
source IEEE Electronic Library (IEL)
subjects anisotropic diffusion
Anisotropic magnetoresistance
Context
contextual noise reduction
Indexing
Lips
Near-duplicate retrieval
Noise reduction
Quantization (signal)
Visualization
title Contextual Noise Reduction for Domain Adaptive Near-Duplicate Retrieval on Merchandize Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20Noise%20Reduction%20for%20Domain%20Adaptive%20Near-Duplicate%20Retrieval%20on%20Merchandize%20Images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhen-Qun%20Yang&rft.date=2017-08&rft.volume=26&rft.issue=8&rft.spage=3896&rft.epage=3910&rft.pages=3896-3910&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2669842&rft_dat=%3Cproquest_RIE%3E1869972908%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869972908&rft_id=info:pmid/28212085&rft_ieee_id=7857083&rfr_iscdi=true