A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy

Objective To develop and externally validate a predictive model for detection of significant prostate cancer. Patients and Methods Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BJU international 2017-12, Vol.120 (6), p.774-781
Hauptverfasser: Leeuwen, Pim J., Hayen, Andrew, Thompson, James E., Moses, Daniel, Shnier, Ron, Böhm, Maret, Abuodha, Magdaline, Haynes, Anne‐Maree, Ting, Francis, Barentsz, Jelle, Roobol, Monique, Vass, Justin, Rasiah, Krishan, Delprado, Warick, Stricker, Phillip D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 6
container_start_page 774
container_title BJU international
container_volume 120
creator Leeuwen, Pim J.
Hayen, Andrew
Thompson, James E.
Moses, Daniel
Shnier, Ron
Böhm, Maret
Abuodha, Magdaline
Haynes, Anne‐Maree
Ting, Francis
Barentsz, Jelle
Roobol, Monique
Vass, Justin
Rasiah, Krishan
Delprado, Warick
Stricker, Phillip D.
description Objective To develop and externally validate a predictive model for detection of significant prostate cancer. Patients and Methods Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate‐specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. Results In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P < 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer. Conclusions Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over‐detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.
doi_str_mv 10.1111/bju.13814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1869968355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967284223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-d12a061affe9695a9eb05761727be7de2f323855ecf21b62d94d419fcd0d261a3</originalsourceid><addsrcrecordid>eNp1kbFuFDEQhi1EREKg4AWQJRooLrG9u167TCICiSLREInO8trjw8eufdheoeso8gA8I0-Cj00oIjGNxzPf_JrRj9ArSk5ojdNhM5_QRtD2CTqiLW9XLSVfnj7kRPJD9DznDSG1wLtn6JAJRnop6BG6O8PTPBa_1UlPUJI3eNLrAKUmCXIMOhjAvtZ8WP_--WvQGSxOPn_DU7Qw4hKxhQJp8gFw-QpLLzqc_Tp4540OBW9TzEUXwGYvl-rfx7QfHXzc5t0LdOD0mOHl_XuMbi_ff774uLr59OHq4uxmZRoh2pWlTBNOtXMguey0hIF0Pac96wfoLTDXsEZ0HRjH6MCZla1tqXTGEsvqXHOM3i66dZ_vM-SiJp8NjKMOEOesqOBSctF0XUXfPEI3cU6hbqeo5D0TLWNNpd4tlKkH5gRO1csmnXaKErW3RlVr1F9rKvv6XnEeJrD_yAcvKnC6AD_8CLv_K6nz69tF8g_cu5sN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967284223</pqid></control><display><type>article</type><title>A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Leeuwen, Pim J. ; Hayen, Andrew ; Thompson, James E. ; Moses, Daniel ; Shnier, Ron ; Böhm, Maret ; Abuodha, Magdaline ; Haynes, Anne‐Maree ; Ting, Francis ; Barentsz, Jelle ; Roobol, Monique ; Vass, Justin ; Rasiah, Krishan ; Delprado, Warick ; Stricker, Phillip D.</creator><creatorcontrib>Leeuwen, Pim J. ; Hayen, Andrew ; Thompson, James E. ; Moses, Daniel ; Shnier, Ron ; Böhm, Maret ; Abuodha, Magdaline ; Haynes, Anne‐Maree ; Ting, Francis ; Barentsz, Jelle ; Roobol, Monique ; Vass, Justin ; Rasiah, Krishan ; Delprado, Warick ; Stricker, Phillip D.</creatorcontrib><description>Objective To develop and externally validate a predictive model for detection of significant prostate cancer. Patients and Methods Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate‐specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with &gt;5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. Results In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P &lt; 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer. Conclusions Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over‐detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.</description><identifier>ISSN: 1464-4096</identifier><identifier>EISSN: 1464-410X</identifier><identifier>DOI: 10.1111/bju.13814</identifier><identifier>PMID: 28207981</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Aged ; Biopsy ; Biopsy - statistics &amp; numerical data ; Data processing ; early detection ; Early Detection of Cancer - statistics &amp; numerical data ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; mpMRI ; NMR ; nomogram ; Nomograms ; Nuclear magnetic resonance ; PCSM ; Prospective Studies ; Prostate - diagnostic imaging ; Prostate - pathology ; Prostate cancer ; Prostate-specific antigen ; ProstateCancer ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - epidemiology ; Prostatic Neoplasms - pathology ; Rectum ; Risk Assessment ; screening ; Statistical analysis</subject><ispartof>BJU international, 2017-12, Vol.120 (6), p.774-781</ispartof><rights>2017 The Authors BJU International © 2017 BJU International Published by John Wiley &amp; Sons Ltd</rights><rights>2017 The Authors BJU International © 2017 BJU International Published by John Wiley &amp; Sons Ltd.</rights><rights>BJUI © 2017 BJU International</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-d12a061affe9695a9eb05761727be7de2f323855ecf21b62d94d419fcd0d261a3</citedby><cites>FETCH-LOGICAL-c3884-d12a061affe9695a9eb05761727be7de2f323855ecf21b62d94d419fcd0d261a3</cites><orcidid>0000-0002-5531-6104 ; 0000-0002-5805-9860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbju.13814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbju.13814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28207981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leeuwen, Pim J.</creatorcontrib><creatorcontrib>Hayen, Andrew</creatorcontrib><creatorcontrib>Thompson, James E.</creatorcontrib><creatorcontrib>Moses, Daniel</creatorcontrib><creatorcontrib>Shnier, Ron</creatorcontrib><creatorcontrib>Böhm, Maret</creatorcontrib><creatorcontrib>Abuodha, Magdaline</creatorcontrib><creatorcontrib>Haynes, Anne‐Maree</creatorcontrib><creatorcontrib>Ting, Francis</creatorcontrib><creatorcontrib>Barentsz, Jelle</creatorcontrib><creatorcontrib>Roobol, Monique</creatorcontrib><creatorcontrib>Vass, Justin</creatorcontrib><creatorcontrib>Rasiah, Krishan</creatorcontrib><creatorcontrib>Delprado, Warick</creatorcontrib><creatorcontrib>Stricker, Phillip D.</creatorcontrib><title>A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy</title><title>BJU international</title><addtitle>BJU Int</addtitle><description>Objective To develop and externally validate a predictive model for detection of significant prostate cancer. Patients and Methods Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate‐specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with &gt;5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. Results In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P &lt; 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer. Conclusions Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over‐detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.</description><subject>Aged</subject><subject>Biopsy</subject><subject>Biopsy - statistics &amp; numerical data</subject><subject>Data processing</subject><subject>early detection</subject><subject>Early Detection of Cancer - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mpMRI</subject><subject>NMR</subject><subject>nomogram</subject><subject>Nomograms</subject><subject>Nuclear magnetic resonance</subject><subject>PCSM</subject><subject>Prospective Studies</subject><subject>Prostate - diagnostic imaging</subject><subject>Prostate - pathology</subject><subject>Prostate cancer</subject><subject>Prostate-specific antigen</subject><subject>ProstateCancer</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - epidemiology</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Rectum</subject><subject>Risk Assessment</subject><subject>screening</subject><subject>Statistical analysis</subject><issn>1464-4096</issn><issn>1464-410X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbFuFDEQhi1EREKg4AWQJRooLrG9u167TCICiSLREInO8trjw8eufdheoeso8gA8I0-Cj00oIjGNxzPf_JrRj9ArSk5ojdNhM5_QRtD2CTqiLW9XLSVfnj7kRPJD9DznDSG1wLtn6JAJRnop6BG6O8PTPBa_1UlPUJI3eNLrAKUmCXIMOhjAvtZ8WP_--WvQGSxOPn_DU7Qw4hKxhQJp8gFw-QpLLzqc_Tp4540OBW9TzEUXwGYvl-rfx7QfHXzc5t0LdOD0mOHl_XuMbi_ff774uLr59OHq4uxmZRoh2pWlTBNOtXMguey0hIF0Pac96wfoLTDXsEZ0HRjH6MCZla1tqXTGEsvqXHOM3i66dZ_vM-SiJp8NjKMOEOesqOBSctF0XUXfPEI3cU6hbqeo5D0TLWNNpd4tlKkH5gRO1csmnXaKErW3RlVr1F9rKvv6XnEeJrD_yAcvKnC6AD_8CLv_K6nz69tF8g_cu5sN</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Leeuwen, Pim J.</creator><creator>Hayen, Andrew</creator><creator>Thompson, James E.</creator><creator>Moses, Daniel</creator><creator>Shnier, Ron</creator><creator>Böhm, Maret</creator><creator>Abuodha, Magdaline</creator><creator>Haynes, Anne‐Maree</creator><creator>Ting, Francis</creator><creator>Barentsz, Jelle</creator><creator>Roobol, Monique</creator><creator>Vass, Justin</creator><creator>Rasiah, Krishan</creator><creator>Delprado, Warick</creator><creator>Stricker, Phillip D.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5531-6104</orcidid><orcidid>https://orcid.org/0000-0002-5805-9860</orcidid></search><sort><creationdate>201712</creationdate><title>A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy</title><author>Leeuwen, Pim J. ; Hayen, Andrew ; Thompson, James E. ; Moses, Daniel ; Shnier, Ron ; Böhm, Maret ; Abuodha, Magdaline ; Haynes, Anne‐Maree ; Ting, Francis ; Barentsz, Jelle ; Roobol, Monique ; Vass, Justin ; Rasiah, Krishan ; Delprado, Warick ; Stricker, Phillip D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-d12a061affe9695a9eb05761727be7de2f323855ecf21b62d94d419fcd0d261a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Biopsy</topic><topic>Biopsy - statistics &amp; numerical data</topic><topic>Data processing</topic><topic>early detection</topic><topic>Early Detection of Cancer - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mpMRI</topic><topic>NMR</topic><topic>nomogram</topic><topic>Nomograms</topic><topic>Nuclear magnetic resonance</topic><topic>PCSM</topic><topic>Prospective Studies</topic><topic>Prostate - diagnostic imaging</topic><topic>Prostate - pathology</topic><topic>Prostate cancer</topic><topic>Prostate-specific antigen</topic><topic>ProstateCancer</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - epidemiology</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Rectum</topic><topic>Risk Assessment</topic><topic>screening</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leeuwen, Pim J.</creatorcontrib><creatorcontrib>Hayen, Andrew</creatorcontrib><creatorcontrib>Thompson, James E.</creatorcontrib><creatorcontrib>Moses, Daniel</creatorcontrib><creatorcontrib>Shnier, Ron</creatorcontrib><creatorcontrib>Böhm, Maret</creatorcontrib><creatorcontrib>Abuodha, Magdaline</creatorcontrib><creatorcontrib>Haynes, Anne‐Maree</creatorcontrib><creatorcontrib>Ting, Francis</creatorcontrib><creatorcontrib>Barentsz, Jelle</creatorcontrib><creatorcontrib>Roobol, Monique</creatorcontrib><creatorcontrib>Vass, Justin</creatorcontrib><creatorcontrib>Rasiah, Krishan</creatorcontrib><creatorcontrib>Delprado, Warick</creatorcontrib><creatorcontrib>Stricker, Phillip D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BJU international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leeuwen, Pim J.</au><au>Hayen, Andrew</au><au>Thompson, James E.</au><au>Moses, Daniel</au><au>Shnier, Ron</au><au>Böhm, Maret</au><au>Abuodha, Magdaline</au><au>Haynes, Anne‐Maree</au><au>Ting, Francis</au><au>Barentsz, Jelle</au><au>Roobol, Monique</au><au>Vass, Justin</au><au>Rasiah, Krishan</au><au>Delprado, Warick</au><au>Stricker, Phillip D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy</atitle><jtitle>BJU international</jtitle><addtitle>BJU Int</addtitle><date>2017-12</date><risdate>2017</risdate><volume>120</volume><issue>6</issue><spage>774</spage><epage>781</epage><pages>774-781</pages><issn>1464-4096</issn><eissn>1464-410X</eissn><abstract>Objective To develop and externally validate a predictive model for detection of significant prostate cancer. Patients and Methods Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate‐specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with &gt;5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. Results In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P &lt; 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer. Conclusions Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over‐detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28207981</pmid><doi>10.1111/bju.13814</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5531-6104</orcidid><orcidid>https://orcid.org/0000-0002-5805-9860</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-4096
ispartof BJU international, 2017-12, Vol.120 (6), p.774-781
issn 1464-4096
1464-410X
language eng
recordid cdi_proquest_miscellaneous_1869968355
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aged
Biopsy
Biopsy - statistics & numerical data
Data processing
early detection
Early Detection of Cancer - statistics & numerical data
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
mpMRI
NMR
nomogram
Nomograms
Nuclear magnetic resonance
PCSM
Prospective Studies
Prostate - diagnostic imaging
Prostate - pathology
Prostate cancer
Prostate-specific antigen
ProstateCancer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - epidemiology
Prostatic Neoplasms - pathology
Rectum
Risk Assessment
screening
Statistical analysis
title A multiparametric magnetic resonance imaging‐based risk model to determine the risk of significant prostate cancer prior to biopsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiparametric%20magnetic%20resonance%20imaging%E2%80%90based%20risk%20model%20to%20determine%20the%20risk%20of%20significant%20prostate%20cancer%20prior%20to%20biopsy&rft.jtitle=BJU%20international&rft.au=Leeuwen,%20Pim%20J.&rft.date=2017-12&rft.volume=120&rft.issue=6&rft.spage=774&rft.epage=781&rft.pages=774-781&rft.issn=1464-4096&rft.eissn=1464-410X&rft_id=info:doi/10.1111/bju.13814&rft_dat=%3Cproquest_cross%3E1967284223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967284223&rft_id=info:pmid/28207981&rfr_iscdi=true