The effect of iron nanoparticles on performance of cognitive tasks in rats

To assess the influence of 62.5 ± 0.6 nm iron nanoparticles on the status of central nervous system, a study was conducted on Wistar rats, which were subjected to abdominal injection of the studied nanoparticles at doses of 2 and 14 mg/kg. Based on the analysis of the structural and functional statu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2017-03, Vol.24 (9), p.8700-8710
Hauptverfasser: Sheida, Elena, Sipailova, Olga, Miroshnikov, Sergei, Sizova, Elena, Lebedev, Svyatoslav, Rusakova, Elena, Notova, Svetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess the influence of 62.5 ± 0.6 nm iron nanoparticles on the status of central nervous system, a study was conducted on Wistar rats, which were subjected to abdominal injection of the studied nanoparticles at doses of 2 and 14 mg/kg. Based on the analysis of the structural and functional status of the cerebral cortex of rats, behavioral reactions of animals, and the elemental composition of the cerebral cortex, we investigated the nanoparticles’ neurotoxic effect, whose degree and nature varied depending on the dosage and the time elapsed after the injection. We identified pathological changes in motor and somatosensory areas of the rats’ cerebral cortex and established pronounced changes in the elemental homeostasis of the animals’ cerebral cortex in experimental groups. Identified structural changes were accompanied by an increase in exploratory activity, locomotor activity, and emotional status of the animals. At that, these activities were more pronounced in rats, which were administered iron nanoparticles at a dose of 14 mg/kg. By the end of the experiment, the excitation processes prevailed over the inhibition processes that have led to the inhibition of central nervous system activity in experimental animals against the adaptation to stress in rats of the control group.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-017-8531-6