New method for ecological monitoring based on the method of self-organising mathematical models

In many situations it is necessary to generate a multidimensional mathematical modelling of the parameters or observations defined on an irregular grid of observation data. We have developed original algorithms that include the methods of self-organisation for this purpose. Unlike regression analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2003-04, Vol.162 (1), p.1-13
Hauptverfasser: Timoshevskii, Andrei, Yeremin, Vladimir, Kalkuta, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Ecological modelling
container_volume 162
creator Timoshevskii, Andrei
Yeremin, Vladimir
Kalkuta, Sergey
description In many situations it is necessary to generate a multidimensional mathematical modelling of the parameters or observations defined on an irregular grid of observation data. We have developed original algorithms that include the methods of self-organisation for this purpose. Unlike regression analysis, the method of self-organisation is based on the purposeful search for optimum model complexity. The optimum model is found by the well-directed exhaustive search within a set of the model-pretenders. The methods that we have developed, were used for analysing the consequences of the Chernobyl disaster. The three- and four-dimensional local polynomial models have been developed. This allowed us to calculate radionuclide distribution maps and carry on a number of prognostic calculations. The field of 137 Cs distribution is characterised by a high determination level ( D≈89.63%). This fact shows a “data consistency” and a low level of a randomness. The map of the 137 Cs prognostic errors of each point allows conclusions to be made regarding whether the point is anomalous or informative. When considering the map of 90 Sr distribution and the map of prognostic residuals, one can conclude that randomness in the 90 Sr field is large ( D≈59.88%). We have calculated a more correct map of the 90 Sr distribution ( D=71.66%) using the four-dimensional modelling where the 137 Cs isotope distribution was introduced as a fourth variable.
doi_str_mv 10.1016/S0304-3800(02)00403-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18686343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380002004039</els_id><sourcerecordid>14665083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-843e9aaf02cb2bff26e4caf0cb65dace1d060ebcd01917beb183e386b668d4b63</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVSbJNsycR8QtED-o55GPSRnY3mmwV_71bW_XoZYZhnncGHkL2KZxQoOL0EThUJZcAR8COASrgZb1BRlROWTkFJjbJ6BfZJjs5vwAAZZKNiLrHj6LFfh5d4WMq0MYmzoLVTdHGLvQxhW5WGJ3RFbEr-jn-0NEXGRtfxjTTXchLrNXDfijruMMm75Itr5uMe-s-Js9Xl08XN-Xdw_XtxfldaXld96WsONZae2DWMOM9E1jZYbRGTJy2SB0IQGMd0JpODRoqOXIpjBDSVUbwMTlc3X1N8W2BuVdtyBabRncYF1lRKaTgFf8frISYgFyCkxVoU8w5oVevKbQ6fSoKauldfXtXS6kKmPr2ruohd7B-oPPgwSfd2ZD_wpWQwDgM3NmKGyzhe8Cksg3YWXQhoe2Vi-GfT1_bh5iX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14665083</pqid></control><display><type>article</type><title>New method for ecological monitoring based on the method of self-organising mathematical models</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Timoshevskii, Andrei ; Yeremin, Vladimir ; Kalkuta, Sergey</creator><creatorcontrib>Timoshevskii, Andrei ; Yeremin, Vladimir ; Kalkuta, Sergey</creatorcontrib><description>In many situations it is necessary to generate a multidimensional mathematical modelling of the parameters or observations defined on an irregular grid of observation data. We have developed original algorithms that include the methods of self-organisation for this purpose. Unlike regression analysis, the method of self-organisation is based on the purposeful search for optimum model complexity. The optimum model is found by the well-directed exhaustive search within a set of the model-pretenders. The methods that we have developed, were used for analysing the consequences of the Chernobyl disaster. The three- and four-dimensional local polynomial models have been developed. This allowed us to calculate radionuclide distribution maps and carry on a number of prognostic calculations. The field of 137 Cs distribution is characterised by a high determination level ( D≈89.63%). This fact shows a “data consistency” and a low level of a randomness. The map of the 137 Cs prognostic errors of each point allows conclusions to be made regarding whether the point is anomalous or informative. When considering the map of 90 Sr distribution and the map of prognostic residuals, one can conclude that randomness in the 90 Sr field is large ( D≈59.88%). We have calculated a more correct map of the 90 Sr distribution ( D=71.66%) using the four-dimensional modelling where the 137 Cs isotope distribution was introduced as a fourth variable.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/S0304-3800(02)00403-9</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Approximation ; Biological and medical sciences ; Distribution of the radionuclides ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Interpolation ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Self-organising mathematical model</subject><ispartof>Ecological modelling, 2003-04, Vol.162 (1), p.1-13</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-843e9aaf02cb2bff26e4caf0cb65dace1d060ebcd01917beb183e386b668d4b63</citedby><cites>FETCH-LOGICAL-c399t-843e9aaf02cb2bff26e4caf0cb65dace1d060ebcd01917beb183e386b668d4b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3800(02)00403-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14680230$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Timoshevskii, Andrei</creatorcontrib><creatorcontrib>Yeremin, Vladimir</creatorcontrib><creatorcontrib>Kalkuta, Sergey</creatorcontrib><title>New method for ecological monitoring based on the method of self-organising mathematical models</title><title>Ecological modelling</title><description>In many situations it is necessary to generate a multidimensional mathematical modelling of the parameters or observations defined on an irregular grid of observation data. We have developed original algorithms that include the methods of self-organisation for this purpose. Unlike regression analysis, the method of self-organisation is based on the purposeful search for optimum model complexity. The optimum model is found by the well-directed exhaustive search within a set of the model-pretenders. The methods that we have developed, were used for analysing the consequences of the Chernobyl disaster. The three- and four-dimensional local polynomial models have been developed. This allowed us to calculate radionuclide distribution maps and carry on a number of prognostic calculations. The field of 137 Cs distribution is characterised by a high determination level ( D≈89.63%). This fact shows a “data consistency” and a low level of a randomness. The map of the 137 Cs prognostic errors of each point allows conclusions to be made regarding whether the point is anomalous or informative. When considering the map of 90 Sr distribution and the map of prognostic residuals, one can conclude that randomness in the 90 Sr field is large ( D≈59.88%). We have calculated a more correct map of the 90 Sr distribution ( D=71.66%) using the four-dimensional modelling where the 137 Cs isotope distribution was introduced as a fourth variable.</description><subject>Animal, plant and microbial ecology</subject><subject>Approximation</subject><subject>Biological and medical sciences</subject><subject>Distribution of the radionuclides</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Interpolation</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Self-organising mathematical model</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVSbJNsycR8QtED-o55GPSRnY3mmwV_71bW_XoZYZhnncGHkL2KZxQoOL0EThUJZcAR8COASrgZb1BRlROWTkFJjbJ6BfZJjs5vwAAZZKNiLrHj6LFfh5d4WMq0MYmzoLVTdHGLvQxhW5WGJ3RFbEr-jn-0NEXGRtfxjTTXchLrNXDfijruMMm75Itr5uMe-s-Js9Xl08XN-Xdw_XtxfldaXld96WsONZae2DWMOM9E1jZYbRGTJy2SB0IQGMd0JpODRoqOXIpjBDSVUbwMTlc3X1N8W2BuVdtyBabRncYF1lRKaTgFf8frISYgFyCkxVoU8w5oVevKbQ6fSoKauldfXtXS6kKmPr2ruohd7B-oPPgwSfd2ZD_wpWQwDgM3NmKGyzhe8Cksg3YWXQhoe2Vi-GfT1_bh5iX</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Timoshevskii, Andrei</creator><creator>Yeremin, Vladimir</creator><creator>Kalkuta, Sergey</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SN</scope></search><sort><creationdate>20030401</creationdate><title>New method for ecological monitoring based on the method of self-organising mathematical models</title><author>Timoshevskii, Andrei ; Yeremin, Vladimir ; Kalkuta, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-843e9aaf02cb2bff26e4caf0cb65dace1d060ebcd01917beb183e386b668d4b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Approximation</topic><topic>Biological and medical sciences</topic><topic>Distribution of the radionuclides</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Interpolation</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Self-organising mathematical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshevskii, Andrei</creatorcontrib><creatorcontrib>Yeremin, Vladimir</creatorcontrib><creatorcontrib>Kalkuta, Sergey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ecology Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshevskii, Andrei</au><au>Yeremin, Vladimir</au><au>Kalkuta, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New method for ecological monitoring based on the method of self-organising mathematical models</atitle><jtitle>Ecological modelling</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>162</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>In many situations it is necessary to generate a multidimensional mathematical modelling of the parameters or observations defined on an irregular grid of observation data. We have developed original algorithms that include the methods of self-organisation for this purpose. Unlike regression analysis, the method of self-organisation is based on the purposeful search for optimum model complexity. The optimum model is found by the well-directed exhaustive search within a set of the model-pretenders. The methods that we have developed, were used for analysing the consequences of the Chernobyl disaster. The three- and four-dimensional local polynomial models have been developed. This allowed us to calculate radionuclide distribution maps and carry on a number of prognostic calculations. The field of 137 Cs distribution is characterised by a high determination level ( D≈89.63%). This fact shows a “data consistency” and a low level of a randomness. The map of the 137 Cs prognostic errors of each point allows conclusions to be made regarding whether the point is anomalous or informative. When considering the map of 90 Sr distribution and the map of prognostic residuals, one can conclude that randomness in the 90 Sr field is large ( D≈59.88%). We have calculated a more correct map of the 90 Sr distribution ( D=71.66%) using the four-dimensional modelling where the 137 Cs isotope distribution was introduced as a fourth variable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3800(02)00403-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2003-04, Vol.162 (1), p.1-13
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_18686343
source ScienceDirect Journals (5 years ago - present)
subjects Animal, plant and microbial ecology
Approximation
Biological and medical sciences
Distribution of the radionuclides
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Interpolation
Methods and techniques (sampling, tagging, trapping, modelling...)
Self-organising mathematical model
title New method for ecological monitoring based on the method of self-organising mathematical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20method%20for%20ecological%20monitoring%20based%20on%20the%20method%20of%20self-organising%20mathematical%20models&rft.jtitle=Ecological%20modelling&rft.au=Timoshevskii,%20Andrei&rft.date=2003-04-01&rft.volume=162&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/S0304-3800(02)00403-9&rft_dat=%3Cproquest_cross%3E14665083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14665083&rft_id=info:pmid/&rft_els_id=S0304380002004039&rfr_iscdi=true