Effect of high voltage atmospheric cold plasma on white grape juice quality

BACKGROUND This study focuses on the effects of novel, non‐thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality‐based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS HVACP treatment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2017-09, Vol.97 (12), p.4016-4021
Hauptverfasser: Pankaj, Shashi Kishor, Wan, Zifan, Colonna, William, Keener, Kevin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4021
container_issue 12
container_start_page 4016
container_title Journal of the science of food and agriculture
container_volume 97
creator Pankaj, Shashi Kishor
Wan, Zifan
Colonna, William
Keener, Kevin M
description BACKGROUND This study focuses on the effects of novel, non‐thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality‐based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log10 CFU mL−1 reduction in Saccharomyces cerevisiae without any significant (P > 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non‐enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. CONCLUSION HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.8268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868396347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927423484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-18b4018b92da82b0a32586d2bd7a4ea9dae5921e26070fdc646b3d1fd6374f233</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2KY49V1fKqxADMlhPbbaqkTuOEqn9PSgsDEsu9wz06ujoAXGM0xAiR0So4PRSEixPQx0gmEUIYnYJ-dyNRjBnpgYsQVgghKTk_Bz0isIwplX3wMnXOZg30Di7zxRJ--qLRCwt1U_pQLW2dZzDzhYFVoUOpoV_D7TJvLFzUurJw1eaZhZtWF3mzuwRnThfBXh33AHzMpu-Tx2j--vA0Gc-jjMZURFikDHVDEqMFSZGmJBbckNQkmlktjbaxJNgSjhLkTMYZT6nBznCaMEcoHYC7g7eq_aa1oVFlHjJbFHptfRsUFlxQySlLOvT2D7rybb3uvlNYkoQRygTrqPsDldU-hNo6VdV5qeudwkjtC6t9YbUv3LE3R2Obltb8kj9JO2B0ALZ5YXf_m9Tz22z8rfwCg6KESg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927423484</pqid></control><display><type>article</type><title>Effect of high voltage atmospheric cold plasma on white grape juice quality</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Pankaj, Shashi Kishor ; Wan, Zifan ; Colonna, William ; Keener, Kevin M</creator><creatorcontrib>Pankaj, Shashi Kishor ; Wan, Zifan ; Colonna, William ; Keener, Kevin M</creatorcontrib><description>BACKGROUND This study focuses on the effects of novel, non‐thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality‐based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log10 CFU mL−1 reduction in Saccharomyces cerevisiae without any significant (P &gt; 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non‐enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. CONCLUSION HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8268</identifier><identifier>PMID: 28195339</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Acidity ; Antioxidants - analysis ; cold plasma ; Cold treatment ; Colony-forming cells ; Color ; Electric potential ; Electrical conductivity ; Electrical resistivity ; Flavonoids ; Flavonoids - analysis ; Flavonols ; Flavonols - analysis ; Food Handling - instrumentation ; Food Handling - methods ; Food quality ; Fruit - chemistry ; Fruit - drug effects ; Fruit and Vegetable Juices - analysis ; Fruit juices ; Fungi ; grape juice ; Heat treatment ; High voltage ; HVACP ; juice quality ; Pasteurization ; pH effects ; Plasma ; Plasma Gases - pharmacology ; Plasmas (physics) ; Quality management ; Saccharomyces cerevisiae ; Scavenging ; Spectrophotometry ; Vitis - chemistry ; Vitis - drug effects ; Voltage</subject><ispartof>Journal of the science of food and agriculture, 2017-09, Vol.97 (12), p.4016-4021</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-18b4018b92da82b0a32586d2bd7a4ea9dae5921e26070fdc646b3d1fd6374f233</citedby><cites>FETCH-LOGICAL-c3538-18b4018b92da82b0a32586d2bd7a4ea9dae5921e26070fdc646b3d1fd6374f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.8268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.8268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28195339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pankaj, Shashi Kishor</creatorcontrib><creatorcontrib>Wan, Zifan</creatorcontrib><creatorcontrib>Colonna, William</creatorcontrib><creatorcontrib>Keener, Kevin M</creatorcontrib><title>Effect of high voltage atmospheric cold plasma on white grape juice quality</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND This study focuses on the effects of novel, non‐thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality‐based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log10 CFU mL−1 reduction in Saccharomyces cerevisiae without any significant (P &gt; 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non‐enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. CONCLUSION HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry</description><subject>Acidity</subject><subject>Antioxidants - analysis</subject><subject>cold plasma</subject><subject>Cold treatment</subject><subject>Colony-forming cells</subject><subject>Color</subject><subject>Electric potential</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Flavonoids</subject><subject>Flavonoids - analysis</subject><subject>Flavonols</subject><subject>Flavonols - analysis</subject><subject>Food Handling - instrumentation</subject><subject>Food Handling - methods</subject><subject>Food quality</subject><subject>Fruit - chemistry</subject><subject>Fruit - drug effects</subject><subject>Fruit and Vegetable Juices - analysis</subject><subject>Fruit juices</subject><subject>Fungi</subject><subject>grape juice</subject><subject>Heat treatment</subject><subject>High voltage</subject><subject>HVACP</subject><subject>juice quality</subject><subject>Pasteurization</subject><subject>pH effects</subject><subject>Plasma</subject><subject>Plasma Gases - pharmacology</subject><subject>Plasmas (physics)</subject><subject>Quality management</subject><subject>Saccharomyces cerevisiae</subject><subject>Scavenging</subject><subject>Spectrophotometry</subject><subject>Vitis - chemistry</subject><subject>Vitis - drug effects</subject><subject>Voltage</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUQC0EoqUw8APIEgsMaf2KY49V1fKqxADMlhPbbaqkTuOEqn9PSgsDEsu9wz06ujoAXGM0xAiR0So4PRSEixPQx0gmEUIYnYJ-dyNRjBnpgYsQVgghKTk_Bz0isIwplX3wMnXOZg30Di7zxRJ--qLRCwt1U_pQLW2dZzDzhYFVoUOpoV_D7TJvLFzUurJw1eaZhZtWF3mzuwRnThfBXh33AHzMpu-Tx2j--vA0Gc-jjMZURFikDHVDEqMFSZGmJBbckNQkmlktjbaxJNgSjhLkTMYZT6nBznCaMEcoHYC7g7eq_aa1oVFlHjJbFHptfRsUFlxQySlLOvT2D7rybb3uvlNYkoQRygTrqPsDldU-hNo6VdV5qeudwkjtC6t9YbUv3LE3R2Obltb8kj9JO2B0ALZ5YXf_m9Tz22z8rfwCg6KESg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Pankaj, Shashi Kishor</creator><creator>Wan, Zifan</creator><creator>Colonna, William</creator><creator>Keener, Kevin M</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Effect of high voltage atmospheric cold plasma on white grape juice quality</title><author>Pankaj, Shashi Kishor ; Wan, Zifan ; Colonna, William ; Keener, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-18b4018b92da82b0a32586d2bd7a4ea9dae5921e26070fdc646b3d1fd6374f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidity</topic><topic>Antioxidants - analysis</topic><topic>cold plasma</topic><topic>Cold treatment</topic><topic>Colony-forming cells</topic><topic>Color</topic><topic>Electric potential</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Flavonoids</topic><topic>Flavonoids - analysis</topic><topic>Flavonols</topic><topic>Flavonols - analysis</topic><topic>Food Handling - instrumentation</topic><topic>Food Handling - methods</topic><topic>Food quality</topic><topic>Fruit - chemistry</topic><topic>Fruit - drug effects</topic><topic>Fruit and Vegetable Juices - analysis</topic><topic>Fruit juices</topic><topic>Fungi</topic><topic>grape juice</topic><topic>Heat treatment</topic><topic>High voltage</topic><topic>HVACP</topic><topic>juice quality</topic><topic>Pasteurization</topic><topic>pH effects</topic><topic>Plasma</topic><topic>Plasma Gases - pharmacology</topic><topic>Plasmas (physics)</topic><topic>Quality management</topic><topic>Saccharomyces cerevisiae</topic><topic>Scavenging</topic><topic>Spectrophotometry</topic><topic>Vitis - chemistry</topic><topic>Vitis - drug effects</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pankaj, Shashi Kishor</creatorcontrib><creatorcontrib>Wan, Zifan</creatorcontrib><creatorcontrib>Colonna, William</creatorcontrib><creatorcontrib>Keener, Kevin M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankaj, Shashi Kishor</au><au>Wan, Zifan</au><au>Colonna, William</au><au>Keener, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of high voltage atmospheric cold plasma on white grape juice quality</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2017-09</date><risdate>2017</risdate><volume>97</volume><issue>12</issue><spage>4016</spage><epage>4021</epage><pages>4016-4021</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND This study focuses on the effects of novel, non‐thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality‐based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. RESULTS HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log10 CFU mL−1 reduction in Saccharomyces cerevisiae without any significant (P &gt; 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non‐enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. CONCLUSION HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>28195339</pmid><doi>10.1002/jsfa.8268</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2017-09, Vol.97 (12), p.4016-4021
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_1868396347
source MEDLINE; Wiley Online Library All Journals
subjects Acidity
Antioxidants - analysis
cold plasma
Cold treatment
Colony-forming cells
Color
Electric potential
Electrical conductivity
Electrical resistivity
Flavonoids
Flavonoids - analysis
Flavonols
Flavonols - analysis
Food Handling - instrumentation
Food Handling - methods
Food quality
Fruit - chemistry
Fruit - drug effects
Fruit and Vegetable Juices - analysis
Fruit juices
Fungi
grape juice
Heat treatment
High voltage
HVACP
juice quality
Pasteurization
pH effects
Plasma
Plasma Gases - pharmacology
Plasmas (physics)
Quality management
Saccharomyces cerevisiae
Scavenging
Spectrophotometry
Vitis - chemistry
Vitis - drug effects
Voltage
title Effect of high voltage atmospheric cold plasma on white grape juice quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20high%20voltage%20atmospheric%20cold%20plasma%20on%20white%20grape%20juice%20quality&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Pankaj,%20Shashi%20Kishor&rft.date=2017-09&rft.volume=97&rft.issue=12&rft.spage=4016&rft.epage=4021&rft.pages=4016-4021&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8268&rft_dat=%3Cproquest_cross%3E1927423484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927423484&rft_id=info:pmid/28195339&rfr_iscdi=true