Biallelic loss‐of‐function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability

DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine‐nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical genetics 2017-10, Vol.92 (4), p.430-433
Hauptverfasser: Helbig, K.L., Mroske, C., Moorthy, D., Sajan, S.A., Velinov, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine‐nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss‐of‐function variants in DOCK3. Diagnostic whole‐exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development.
ISSN:0009-9163
1399-0004
DOI:10.1111/cge.12995