Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research

Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are require...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2017-03, Vol.40 (2), p.404-418
Hauptverfasser: Fassbender, Andrea J., Alin, Simone R., Feely, Richard A., Sutton, Adrienne J., Newton, Jan A., Byrne, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 2
container_start_page 404
container_title Estuaries and coasts
container_volume 40
creator Fassbender, Andrea J.
Alin, Simone R.
Feely, Richard A.
Sutton, Adrienne J.
Newton, Jan A.
Byrne, Robert H.
description Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant singlecaibonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; lσ = ±17 μmol kg⁻¹) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO₂), and pH from a surface mooring on the outer coast of Washington. In situ pCO₂ observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO₂-pH time senes.
doi_str_mv 10.1007/s12237-016-0168-z
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868339250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44858261</jstor_id><sourcerecordid>44858261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-3e1479f22fce9aaf93e9af1874f1e3e4453625a8885a2df7d5f382cc7cfbbfe03</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxgepYFt9AC-EQG96M5q_k4x3y9KqUCjYFsGbIc2edLPOJtucLLR9AJ_bDCNFeuHF4eSQ3_edhK9p3jP6kVGqPyHjXOiWsm4q0z69ag6ZUn3LtWAHz2cu3jRHiBtKpVJUHja_z7CErS0h3pHrVOxIFuMvO4YYyiMJkZQ1kB8W1_W-pEiuii1AlsnihP5MET7Xabsb4SGUAEhsXJGrfd7lgJPlTQnj5ORTJpcObCQLF1bBB1dXVr_vgGCzW79tXns7Irz724-bm_Oz6-XX9uLyy7fl4qJ1UujSCmBS955z76C31veiNs-Mlp6BACmV6Liyxhhl-crrlfLCcOe087e3Hqg4bk5n311O93vAMmwDOhhHGyHtcWCmM0L0XE3oyQt0k_Y51tdNlOKdZkJWis2Uywkxgx_q17c2Pw6MDlMyw5zMUFOZygxPVcNnDVY23kH-x_k_og-zaIMl5ectUhpleMfEH5RJnVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865267134</pqid></control><display><type>article</type><title>Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Fassbender, Andrea J. ; Alin, Simone R. ; Feely, Richard A. ; Sutton, Adrienne J. ; Newton, Jan A. ; Byrne, Robert H.</creator><creatorcontrib>Fassbender, Andrea J. ; Alin, Simone R. ; Feely, Richard A. ; Sutton, Adrienne J. ; Newton, Jan A. ; Byrne, Robert H.</creatorcontrib><description>Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant singlecaibonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; lσ = ±17 μmol kg⁻¹) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO₂), and pH from a surface mooring on the outer coast of Washington. In situ pCO₂ observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO₂-pH time senes.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-016-0168-z</identifier><language>eng</language><publisher>New York: Springer Science+Business Media</publisher><subject>Acidification ; Alkalinity ; Brackish ; Carbon dioxide ; Coastal Sciences ; Coastal zone ; Coastal zone management ; Earth and Environmental Science ; Ecology ; Environment ; Environmental Management ; Estimating techniques ; Freshwater &amp; Marine Ecology ; Inorganic carbon ; Ocean acidification ; Oceanographic research ; Oceans ; pH sensors ; Salinity ; Seawater ; Surface water ; Water and Health</subject><ispartof>Estuaries and coasts, 2017-03, Vol.40 (2), p.404-418</ispartof><rights>Coastal and Estuarine Research Federation 2017</rights><rights>Coastal and Estuarine Research Federation (outside the USA) 2016</rights><rights>Estuaries and Coasts is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-3e1479f22fce9aaf93e9af1874f1e3e4453625a8885a2df7d5f382cc7cfbbfe03</citedby><cites>FETCH-LOGICAL-c437t-3e1479f22fce9aaf93e9af1874f1e3e4453625a8885a2df7d5f382cc7cfbbfe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44858261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44858261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids></links><search><creatorcontrib>Fassbender, Andrea J.</creatorcontrib><creatorcontrib>Alin, Simone R.</creatorcontrib><creatorcontrib>Feely, Richard A.</creatorcontrib><creatorcontrib>Sutton, Adrienne J.</creatorcontrib><creatorcontrib>Newton, Jan A.</creatorcontrib><creatorcontrib>Byrne, Robert H.</creatorcontrib><title>Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant singlecaibonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; lσ = ±17 μmol kg⁻¹) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO₂), and pH from a surface mooring on the outer coast of Washington. In situ pCO₂ observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO₂-pH time senes.</description><subject>Acidification</subject><subject>Alkalinity</subject><subject>Brackish</subject><subject>Carbon dioxide</subject><subject>Coastal Sciences</subject><subject>Coastal zone</subject><subject>Coastal zone management</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Estimating techniques</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Inorganic carbon</subject><subject>Ocean acidification</subject><subject>Oceanographic research</subject><subject>Oceans</subject><subject>pH sensors</subject><subject>Salinity</subject><subject>Seawater</subject><subject>Surface water</subject><subject>Water and Health</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd9qFDEUxgepYFt9AC-EQG96M5q_k4x3y9KqUCjYFsGbIc2edLPOJtucLLR9AJ_bDCNFeuHF4eSQ3_edhK9p3jP6kVGqPyHjXOiWsm4q0z69ag6ZUn3LtWAHz2cu3jRHiBtKpVJUHja_z7CErS0h3pHrVOxIFuMvO4YYyiMJkZQ1kB8W1_W-pEiuii1AlsnihP5MET7Xabsb4SGUAEhsXJGrfd7lgJPlTQnj5ORTJpcObCQLF1bBB1dXVr_vgGCzW79tXns7Irz724-bm_Oz6-XX9uLyy7fl4qJ1UujSCmBS955z76C31veiNs-Mlp6BACmV6Liyxhhl-crrlfLCcOe087e3Hqg4bk5n311O93vAMmwDOhhHGyHtcWCmM0L0XE3oyQt0k_Y51tdNlOKdZkJWis2Uywkxgx_q17c2Pw6MDlMyw5zMUFOZygxPVcNnDVY23kH-x_k_og-zaIMl5ectUhpleMfEH5RJnVk</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Fassbender, Andrea J.</creator><creator>Alin, Simone R.</creator><creator>Feely, Richard A.</creator><creator>Sutton, Adrienne J.</creator><creator>Newton, Jan A.</creator><creator>Byrne, Robert H.</creator><general>Springer Science+Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research</title><author>Fassbender, Andrea J. ; Alin, Simone R. ; Feely, Richard A. ; Sutton, Adrienne J. ; Newton, Jan A. ; Byrne, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-3e1479f22fce9aaf93e9af1874f1e3e4453625a8885a2df7d5f382cc7cfbbfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Alkalinity</topic><topic>Brackish</topic><topic>Carbon dioxide</topic><topic>Coastal Sciences</topic><topic>Coastal zone</topic><topic>Coastal zone management</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Estimating techniques</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Inorganic carbon</topic><topic>Ocean acidification</topic><topic>Oceanographic research</topic><topic>Oceans</topic><topic>pH sensors</topic><topic>Salinity</topic><topic>Seawater</topic><topic>Surface water</topic><topic>Water and Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassbender, Andrea J.</creatorcontrib><creatorcontrib>Alin, Simone R.</creatorcontrib><creatorcontrib>Feely, Richard A.</creatorcontrib><creatorcontrib>Sutton, Adrienne J.</creatorcontrib><creatorcontrib>Newton, Jan A.</creatorcontrib><creatorcontrib>Byrne, Robert H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassbender, Andrea J.</au><au>Alin, Simone R.</au><au>Feely, Richard A.</au><au>Sutton, Adrienne J.</au><au>Newton, Jan A.</au><au>Byrne, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>40</volume><issue>2</issue><spage>404</spage><epage>418</epage><pages>404-418</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant singlecaibonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; lσ = ±17 μmol kg⁻¹) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO₂), and pH from a surface mooring on the outer coast of Washington. In situ pCO₂ observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO₂-pH time senes.</abstract><cop>New York</cop><pub>Springer Science+Business Media</pub><doi>10.1007/s12237-016-0168-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-2723
ispartof Estuaries and coasts, 2017-03, Vol.40 (2), p.404-418
issn 1559-2723
1559-2731
language eng
recordid cdi_proquest_miscellaneous_1868339250
source Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Acidification
Alkalinity
Brackish
Carbon dioxide
Coastal Sciences
Coastal zone
Coastal zone management
Earth and Environmental Science
Ecology
Environment
Environmental Management
Estimating techniques
Freshwater & Marine Ecology
Inorganic carbon
Ocean acidification
Oceanographic research
Oceans
pH sensors
Salinity
Seawater
Surface water
Water and Health
title Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Total%20Alkalinity%20in%20the%20Washington%20State%20Coastal%20Zone:%20Complexities%20and%20Surprising%20Utility%20for%20Ocean%20Acidification%20Research&rft.jtitle=Estuaries%20and%20coasts&rft.au=Fassbender,%20Andrea%20J.&rft.date=2017-03-01&rft.volume=40&rft.issue=2&rft.spage=404&rft.epage=418&rft.pages=404-418&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-016-0168-z&rft_dat=%3Cjstor_proqu%3E44858261%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865267134&rft_id=info:pmid/&rft_jstor_id=44858261&rfr_iscdi=true