Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification

Abstract Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware archit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2017-01, Vol.80, p.30-38
Hauptverfasser: Torti, E, Koliopoulos, D, Matraxia, M, Danese, G, Leporati, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 30
container_title Computers in biology and medicine
container_volume 80
creator Torti, E
Koliopoulos, D
Matraxia, M
Danese, G
Leporati, F
description Abstract Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, as the best of our knowledge.
doi_str_mv 10.1016/j.compbiomed.2016.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868338121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482516303006</els_id><sourcerecordid>4312277111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a0860c1a3dc0b5edc448dee7516f3d2092a2dce95953de72819bba6197338fd53</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EokvhKyBLXLgkjP8kcS5IZbW7VFqJCsrZcuwJ8pLEi51F9NvjaFtV6qknS-PfvNHMe4RQBiUDVn86lDaMx86HEV3Jc6VkrASoX5AVU01bQCXkS7ICYFBIxasL8ialAwBIEPCaXPBGqczJFdmvT2kOI93e7K7oTQwWU_LTL9qHSL-jGYpbPyLd4mwGulnv6ObfHI2dfZiomRy9djjNvvfWLKW35FVvhoTv7t9L8nO7uV1_Lfbfdtfrq31hZQtzYUDVYJkRzkJXobNSKofYVKzuhePQcsOdxbZqK-Gw4Yq1XWdq1jZCqN5V4pJ8POseY_hzwjTr0SeLw2AmDKekmapVRhlnz0ClFJXkbEE_PEEP4RSnvMgiWHHRCFgodaZsDClF7PUx-tHEO81AL-bog340Ry_maMZ0Nie3vr8fcOqWv4fGBzcy8OUMYD7eX49RJ-txsuh8RDtrF_xzpnx-ImIHP2WHht94h-lxJ524Bv1jCcmSEVaLHI4s8B_aMrdu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865237301</pqid></control><display><type>article</type><title>Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Torti, E ; Koliopoulos, D ; Matraxia, M ; Danese, G ; Leporati, F</creator><creatorcontrib>Torti, E ; Koliopoulos, D ; Matraxia, M ; Danese, G ; Leporati, F</creatorcontrib><description>Abstract Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, as the best of our knowledge.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2016.11.006</identifier><identifier>PMID: 27888794</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Biomedical instrumentation ; Cluster Analysis ; Colleges &amp; universities ; Digital signal processors ; Electrocardiography - methods ; Embedded systems ; Female ; Fetal ECG ; Fetal Monitoring - methods ; Fetus - physiology ; Fetuses ; Field programmable gate array (FPGA) ; Field programmable gate arrays ; Heart rate ; Humans ; Internal Medicine ; Morphology ; Neural networks ; Other ; Pregnancy ; Signal Processing, Computer-Assisted ; Wavelet transforms</subject><ispartof>Computers in biology and medicine, 2017-01, Vol.80, p.30-38</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 01, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a0860c1a3dc0b5edc448dee7516f3d2092a2dce95953de72819bba6197338fd53</citedby><cites>FETCH-LOGICAL-c490t-a0860c1a3dc0b5edc448dee7516f3d2092a2dce95953de72819bba6197338fd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482516303006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27888794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torti, E</creatorcontrib><creatorcontrib>Koliopoulos, D</creatorcontrib><creatorcontrib>Matraxia, M</creatorcontrib><creatorcontrib>Danese, G</creatorcontrib><creatorcontrib>Leporati, F</creatorcontrib><title>Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, as the best of our knowledge.</description><subject>Algorithms</subject><subject>Biomedical instrumentation</subject><subject>Cluster Analysis</subject><subject>Colleges &amp; universities</subject><subject>Digital signal processors</subject><subject>Electrocardiography - methods</subject><subject>Embedded systems</subject><subject>Female</subject><subject>Fetal ECG</subject><subject>Fetal Monitoring - methods</subject><subject>Fetus - physiology</subject><subject>Fetuses</subject><subject>Field programmable gate array (FPGA)</subject><subject>Field programmable gate arrays</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Other</subject><subject>Pregnancy</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Wavelet transforms</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk9v1DAQxS0EokvhKyBLXLgkjP8kcS5IZbW7VFqJCsrZcuwJ8pLEi51F9NvjaFtV6qknS-PfvNHMe4RQBiUDVn86lDaMx86HEV3Jc6VkrASoX5AVU01bQCXkS7ICYFBIxasL8ialAwBIEPCaXPBGqczJFdmvT2kOI93e7K7oTQwWU_LTL9qHSL-jGYpbPyLd4mwGulnv6ObfHI2dfZiomRy9djjNvvfWLKW35FVvhoTv7t9L8nO7uV1_Lfbfdtfrq31hZQtzYUDVYJkRzkJXobNSKofYVKzuhePQcsOdxbZqK-Gw4Yq1XWdq1jZCqN5V4pJ8POseY_hzwjTr0SeLw2AmDKekmapVRhlnz0ClFJXkbEE_PEEP4RSnvMgiWHHRCFgodaZsDClF7PUx-tHEO81AL-bog340Ry_maMZ0Nie3vr8fcOqWv4fGBzcy8OUMYD7eX49RJ-txsuh8RDtrF_xzpnx-ImIHP2WHht94h-lxJ524Bv1jCcmSEVaLHI4s8B_aMrdu</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Torti, E</creator><creator>Koliopoulos, D</creator><creator>Matraxia, M</creator><creator>Danese, G</creator><creator>Leporati, F</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20170101</creationdate><title>Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification</title><author>Torti, E ; Koliopoulos, D ; Matraxia, M ; Danese, G ; Leporati, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a0860c1a3dc0b5edc448dee7516f3d2092a2dce95953de72819bba6197338fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biomedical instrumentation</topic><topic>Cluster Analysis</topic><topic>Colleges &amp; universities</topic><topic>Digital signal processors</topic><topic>Electrocardiography - methods</topic><topic>Embedded systems</topic><topic>Female</topic><topic>Fetal ECG</topic><topic>Fetal Monitoring - methods</topic><topic>Fetus - physiology</topic><topic>Fetuses</topic><topic>Field programmable gate array (FPGA)</topic><topic>Field programmable gate arrays</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Other</topic><topic>Pregnancy</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torti, E</creatorcontrib><creatorcontrib>Koliopoulos, D</creatorcontrib><creatorcontrib>Matraxia, M</creatorcontrib><creatorcontrib>Danese, G</creatorcontrib><creatorcontrib>Leporati, F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torti, E</au><au>Koliopoulos, D</au><au>Matraxia, M</au><au>Danese, G</au><au>Leporati, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>80</volume><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, as the best of our knowledge.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27888794</pmid><doi>10.1016/j.compbiomed.2016.11.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2017-01, Vol.80, p.30-38
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1868338121
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Biomedical instrumentation
Cluster Analysis
Colleges & universities
Digital signal processors
Electrocardiography - methods
Embedded systems
Female
Fetal ECG
Fetal Monitoring - methods
Fetus - physiology
Fetuses
Field programmable gate array (FPGA)
Field programmable gate arrays
Heart rate
Humans
Internal Medicine
Morphology
Neural networks
Other
Pregnancy
Signal Processing, Computer-Assisted
Wavelet transforms
title Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Custom%20FPGA%20Processing%20for%20Real-Time%20Fetal%20ECG%20Extraction%20and%20Identification&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Torti,%20E&rft.date=2017-01-01&rft.volume=80&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2016.11.006&rft_dat=%3Cproquest_cross%3E4312277111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865237301&rft_id=info:pmid/27888794&rft_els_id=S0010482516303006&rfr_iscdi=true