Integrated Genome and Protein Editing Swaps α‐2,6 Sialylation for α‐2,3 Sialic Acid on Recombinant Antibodies from CHO

Immunoglobin G with α‐2,6 sialylation has been reported to have an impact on antibody‐dependent cellular cytotoxicity and anti‐inflammatory efficacy. However, production of antibodies with α‐2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransfera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology journal 2017-02, Vol.12 (2), p.np-n/a
Hauptverfasser: Chung, Cheng‐yu, Wang, Qiong, Yang, Shuang, Yin, Bojiao, Zhang, Hui, Betenbaugh, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunoglobin G with α‐2,6 sialylation has been reported to have an impact on antibody‐dependent cellular cytotoxicity and anti‐inflammatory efficacy. However, production of antibodies with α‐2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransferases for the heavy chain N‐glycan site and the presence of exclusively α‐2,3 sialyltransferases. In this study, combining mutations on the Fc regions to allow sialyltransferase accessibility with overexpression of α‐2,6 sialyltransferase produced IgG with significant levels of both α‐2,6 and α‐2,3 sialylation. Therefore, ST3GAL4 and ST3GAL6 genes were disrupted by CRISPR/Cas9 to minimize the α‐2,3 sialylation. Sialidase treatment and SNA lectin blot indicated greatly increased α‐2,6 sialylation level relative to α‐2,3 sialylation for the α‐2,3 sialyltransferase knockouts when combined with α‐2,6 sialyltransferase overexpression. Indeed, α‐2,3 linked sialic acids were not detected on IgG produced from the α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase overexpression pools. Finally, glycoprofiling of IgG with four amino acid substitutions expressed from an α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase stable clone resulted in more than 77% sialylated glycans and more than 62% biantennary disialylated glycans as indicated by both MALDI‐TOF and LC‐ESI‐MS. Engineered antibodies from these modified Chinese hamster ovary cell lines will provide biotechnologists with IgGs containing N‐glycans with different structural variations for examining the role of glycosylation on protein performance. Amino acid substitutions are employed to enhance sialylation of IgG antibodies. The α‐2,3 sialylation level is greatly reduced by knocking out α‐2,3 sialyltransferase genes. Overexpression of α‐2,6 sialyltransferase I for the α‐2,3 sialyltransferase knockout cells are produced IgG antibodies containing a majority of α‐2,6 sialylation linkages.
ISSN:1860-6768
1860-7314
DOI:10.1002/biot.201600502