Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system
Abstract We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mas...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2017-02, Vol.81, p.188-198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | Computers in biology and medicine |
container_volume | 81 |
creator | Alexiadis, A Stamatopoulos, K Wen, W Batchelor, H.K Bakalis, S Barigou, M Simmons, M.J.H |
description | Abstract We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data. |
doi_str_mv | 10.1016/j.compbiomed.2017.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868328282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482517300033</els_id><sourcerecordid>1861548263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-39cc0aeadbcc00b509e4fa06634b632fcd6e2465362763fdd975a3a5fa2a928c3</originalsourceid><addsrcrecordid>eNqNks1q3TAQhUVpaW7TvkIRdNON3ZFky_Km0Ib-QaCLNmshS-NGt7blSnaI374yNyGQVRBoFvOdGWbOEEIZlAyY_HAsbRjnzocRXcmBNSWwEkA8IwemmraAWlTPyQGAQVEpXp-RVykdAaACAS_JGVeglGz4gXRXyU9_qPPJRlyQjuuw-GK-3pK3ifYhUoeL8QM6irfzEKJZfJho6On15mJw22TGnfQTNdP-3_glBmrDkKm0pQXH1-RFb4aEb-7iObn6-uX3xffi8ue3HxefLgtbV7AUorUWDBrX5QhdDS1WvQEpRdVJwXvrJPJK1kLyRoreubapjTB1b7hpubLinLw_1Z1j-LdiWvSYp8JhMBOGNWmmpBJc5fcUlNV5cVJk9N0j9BjWOOVBdkrUkvOmypQ6UTaGlCL2eo5-NHHTDPRumT7qB8v0bpkGprNlWfr2rsHa7bl74b1HGfh8AjAv78Zj1Ml6nCw6H9Eu2gX_lC4fHxWxg5-8NcNf3DA9zKQT16B_7aezXw5rBOx68R9IZsIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863562274</pqid></control><display><type>article</type><title>Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Alexiadis, A ; Stamatopoulos, K ; Wen, W ; Batchelor, H.K ; Bakalis, S ; Barigou, M ; Simmons, M.J.H</creator><creatorcontrib>Alexiadis, A ; Stamatopoulos, K ; Wen, W ; Batchelor, H.K ; Bakalis, S ; Barigou, M ; Simmons, M.J.H</creatorcontrib><description>Abstract We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.01.003</identifier><identifier>PMID: 28088672</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Atoms & subatomic particles ; Colon - physiology ; Computer Simulation ; Fluid dynamics ; Fluid mechanics ; Fluid-structure interaction ; Gastrointestinal Transit - physiology ; Geometry ; Humans ; Hydrodynamics ; Internal Medicine ; Intestine ; Mathematical modelling ; Models, Biological ; Other ; Peristalsis ; Peristalsis - physiology ; Reproducibility of Results ; Rheology - methods ; Sensitivity and Specificity ; Simulation ; Smoothed particle hydrodynamics ; Studies ; Velocity ; Viscosity</subject><ispartof>Computers in biology and medicine, 2017-02, Vol.81, p.188-198</ispartof><rights>Elsevier Ltd</rights><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-39cc0aeadbcc00b509e4fa06634b632fcd6e2465362763fdd975a3a5fa2a928c3</citedby><cites>FETCH-LOGICAL-c540t-39cc0aeadbcc00b509e4fa06634b632fcd6e2465362763fdd975a3a5fa2a928c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1863562274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28088672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexiadis, A</creatorcontrib><creatorcontrib>Stamatopoulos, K</creatorcontrib><creatorcontrib>Wen, W</creatorcontrib><creatorcontrib>Batchelor, H.K</creatorcontrib><creatorcontrib>Bakalis, S</creatorcontrib><creatorcontrib>Barigou, M</creatorcontrib><creatorcontrib>Simmons, M.J.H</creatorcontrib><title>Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data.</description><subject>Algorithms</subject><subject>Atoms & subatomic particles</subject><subject>Colon - physiology</subject><subject>Computer Simulation</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluid-structure interaction</subject><subject>Gastrointestinal Transit - physiology</subject><subject>Geometry</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Internal Medicine</subject><subject>Intestine</subject><subject>Mathematical modelling</subject><subject>Models, Biological</subject><subject>Other</subject><subject>Peristalsis</subject><subject>Peristalsis - physiology</subject><subject>Reproducibility of Results</subject><subject>Rheology - methods</subject><subject>Sensitivity and Specificity</subject><subject>Simulation</subject><subject>Smoothed particle hydrodynamics</subject><subject>Studies</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1q3TAQhUVpaW7TvkIRdNON3ZFky_Km0Ib-QaCLNmshS-NGt7blSnaI374yNyGQVRBoFvOdGWbOEEIZlAyY_HAsbRjnzocRXcmBNSWwEkA8IwemmraAWlTPyQGAQVEpXp-RVykdAaACAS_JGVeglGz4gXRXyU9_qPPJRlyQjuuw-GK-3pK3ifYhUoeL8QM6irfzEKJZfJho6On15mJw22TGnfQTNdP-3_glBmrDkKm0pQXH1-RFb4aEb-7iObn6-uX3xffi8ue3HxefLgtbV7AUorUWDBrX5QhdDS1WvQEpRdVJwXvrJPJK1kLyRoreubapjTB1b7hpubLinLw_1Z1j-LdiWvSYp8JhMBOGNWmmpBJc5fcUlNV5cVJk9N0j9BjWOOVBdkrUkvOmypQ6UTaGlCL2eo5-NHHTDPRumT7qB8v0bpkGprNlWfr2rsHa7bl74b1HGfh8AjAv78Zj1Ml6nCw6H9Eu2gX_lC4fHxWxg5-8NcNf3DA9zKQT16B_7aezXw5rBOx68R9IZsIA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Alexiadis, A</creator><creator>Stamatopoulos, K</creator><creator>Wen, W</creator><creator>Batchelor, H.K</creator><creator>Bakalis, S</creator><creator>Barigou, M</creator><creator>Simmons, M.J.H</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20170201</creationdate><title>Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system</title><author>Alexiadis, A ; Stamatopoulos, K ; Wen, W ; Batchelor, H.K ; Bakalis, S ; Barigou, M ; Simmons, M.J.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-39cc0aeadbcc00b509e4fa06634b632fcd6e2465362763fdd975a3a5fa2a928c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atoms & subatomic particles</topic><topic>Colon - physiology</topic><topic>Computer Simulation</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluid-structure interaction</topic><topic>Gastrointestinal Transit - physiology</topic><topic>Geometry</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Internal Medicine</topic><topic>Intestine</topic><topic>Mathematical modelling</topic><topic>Models, Biological</topic><topic>Other</topic><topic>Peristalsis</topic><topic>Peristalsis - physiology</topic><topic>Reproducibility of Results</topic><topic>Rheology - methods</topic><topic>Sensitivity and Specificity</topic><topic>Simulation</topic><topic>Smoothed particle hydrodynamics</topic><topic>Studies</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexiadis, A</creatorcontrib><creatorcontrib>Stamatopoulos, K</creatorcontrib><creatorcontrib>Wen, W</creatorcontrib><creatorcontrib>Batchelor, H.K</creatorcontrib><creatorcontrib>Bakalis, S</creatorcontrib><creatorcontrib>Barigou, M</creatorcontrib><creatorcontrib>Simmons, M.J.H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexiadis, A</au><au>Stamatopoulos, K</au><au>Wen, W</au><au>Batchelor, H.K</au><au>Bakalis, S</au><au>Barigou, M</au><au>Simmons, M.J.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>81</volume><spage>188</spage><epage>198</epage><pages>188-198</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28088672</pmid><doi>10.1016/j.compbiomed.2017.01.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2017-02, Vol.81, p.188-198 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1868328282 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Atoms & subatomic particles Colon - physiology Computer Simulation Fluid dynamics Fluid mechanics Fluid-structure interaction Gastrointestinal Transit - physiology Geometry Humans Hydrodynamics Internal Medicine Intestine Mathematical modelling Models, Biological Other Peristalsis Peristalsis - physiology Reproducibility of Results Rheology - methods Sensitivity and Specificity Simulation Smoothed particle hydrodynamics Studies Velocity Viscosity |
title | Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20discrete%20multi-physics%20for%20detailed%20exploration%20of%20hydrodynamics%20in%20an%20in%20vitro%20colon%20system&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Alexiadis,%20A&rft.date=2017-02-01&rft.volume=81&rft.spage=188&rft.epage=198&rft.pages=188-198&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2017.01.003&rft_dat=%3Cproquest_cross%3E1861548263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863562274&rft_id=info:pmid/28088672&rft_els_id=S0010482517300033&rfr_iscdi=true |