Verification of Kara Sea primary production models with field and satellite observations

The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oceanology (Washington. 1965) 2016-11, Vol.56 (6), p.799-808
Hauptverfasser: Demidov, A. B., Sheberstov, S. V., Vazyulya, S. V., Artemiev, V. A., Mosharov, S. A., Khrapko, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 808
container_issue 6
container_start_page 799
container_title Oceanology (Washington. 1965)
container_volume 56
creator Demidov, A. B.
Sheberstov, S. V.
Vazyulya, S. V.
Artemiev, V. A.
Mosharov, S. A.
Khrapko, A. N.
description The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated primary production (IPP) in autumn by a factor of 2 and 2.5 with shipboard data as input parameters; the rootmean-square difference (RMSD) was 0.29 and 0.39, respectively. In summer, the efficiency of Ψ-Mod decreased by a factor of 1.5 (RMSD = 0.57), while the predictive capacity of the KSDRM remained the same (RMSD = 0.31). In the Laptev Sea in autumn, the KSDRM performed better than Ψ-Mod (the RMSD was 0.24 and 0.41, respectively). There was no sufficient decrease in the predictive skill of either algorithm when MODIS-Aqua data were used as input parameters. Thus, Ψ-Mod, being a simple and precise algorithm, can be recommended for evaluating the annual IPP in the Kara Sea and for studying its long-term variability using satellite data.
doi_str_mv 10.1134/S0001437016060011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868317702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868317702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e1557ab2d45ce22e9e104591a2aa8d2a0ed62e67fa854503153bd98b6791f4363</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBN26quXm2Sxl84YCLUXFX0uZWM3RaTTqK_97MYyGKq3vhfOdwOIQcAzsDEPJ8xhgDKQwDzXR6YYeMQAnIcsXyXTJaydlK3ycHMc4ZEyCLfESenzD4xtd28H1H-4be2WDpDC19C35hw1e6vVvWa3nRO2wj_fTDK208to7aztFoB2xbPyDtq4jhYx0VD8leY9uIR9s7Jo9Xlw-Tm2x6f307uZhmtZDFkCEoZWzFnVQ1co4FApOqAMutzR23DJ3mqE1jcyVVaq1E5Yq80qaARgotxuR0k5t6vi8xDuXCxzoVsh32y1hCrnMBxjCe0JNf6Lxfhi61S5TSHIwQJlGwoerQxxiwKbdLlMDK1dbln62Th288MbHdC4Yfyf-avgHjZX9x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856217337</pqid></control><display><type>article</type><title>Verification of Kara Sea primary production models with field and satellite observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Demidov, A. B. ; Sheberstov, S. V. ; Vazyulya, S. V. ; Artemiev, V. A. ; Mosharov, S. A. ; Khrapko, A. N.</creator><creatorcontrib>Demidov, A. B. ; Sheberstov, S. V. ; Vazyulya, S. V. ; Artemiev, V. A. ; Mosharov, S. A. ; Khrapko, A. N.</creatorcontrib><description>The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated primary production (IPP) in autumn by a factor of 2 and 2.5 with shipboard data as input parameters; the rootmean-square difference (RMSD) was 0.29 and 0.39, respectively. In summer, the efficiency of Ψ-Mod decreased by a factor of 1.5 (RMSD = 0.57), while the predictive capacity of the KSDRM remained the same (RMSD = 0.31). In the Laptev Sea in autumn, the KSDRM performed better than Ψ-Mod (the RMSD was 0.24 and 0.41, respectively). There was no sufficient decrease in the predictive skill of either algorithm when MODIS-Aqua data were used as input parameters. Thus, Ψ-Mod, being a simple and precise algorithm, can be recommended for evaluating the annual IPP in the Kara Sea and for studying its long-term variability using satellite data.</description><identifier>ISSN: 0001-4370</identifier><identifier>EISSN: 1531-8508</identifier><identifier>DOI: 10.1134/S0001437016060011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Autumn ; Biogeochemistry ; Earth and Environmental Science ; Earth Sciences ; Marine ; Marine Biology ; Mathematical models ; Oceanography ; Primary production ; Water column ; Water depth</subject><ispartof>Oceanology (Washington. 1965), 2016-11, Vol.56 (6), p.799-808</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><rights>Oceanology is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e1557ab2d45ce22e9e104591a2aa8d2a0ed62e67fa854503153bd98b6791f4363</citedby><cites>FETCH-LOGICAL-c349t-e1557ab2d45ce22e9e104591a2aa8d2a0ed62e67fa854503153bd98b6791f4363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001437016060011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001437016060011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Demidov, A. B.</creatorcontrib><creatorcontrib>Sheberstov, S. V.</creatorcontrib><creatorcontrib>Vazyulya, S. V.</creatorcontrib><creatorcontrib>Artemiev, V. A.</creatorcontrib><creatorcontrib>Mosharov, S. A.</creatorcontrib><creatorcontrib>Khrapko, A. N.</creatorcontrib><title>Verification of Kara Sea primary production models with field and satellite observations</title><title>Oceanology (Washington. 1965)</title><addtitle>Oceanology</addtitle><description>The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated primary production (IPP) in autumn by a factor of 2 and 2.5 with shipboard data as input parameters; the rootmean-square difference (RMSD) was 0.29 and 0.39, respectively. In summer, the efficiency of Ψ-Mod decreased by a factor of 1.5 (RMSD = 0.57), while the predictive capacity of the KSDRM remained the same (RMSD = 0.31). In the Laptev Sea in autumn, the KSDRM performed better than Ψ-Mod (the RMSD was 0.24 and 0.41, respectively). There was no sufficient decrease in the predictive skill of either algorithm when MODIS-Aqua data were used as input parameters. Thus, Ψ-Mod, being a simple and precise algorithm, can be recommended for evaluating the annual IPP in the Kara Sea and for studying its long-term variability using satellite data.</description><subject>Algorithms</subject><subject>Autumn</subject><subject>Biogeochemistry</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Marine</subject><subject>Marine Biology</subject><subject>Mathematical models</subject><subject>Oceanography</subject><subject>Primary production</subject><subject>Water column</subject><subject>Water depth</subject><issn>0001-4370</issn><issn>1531-8508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcBN26quXm2Sxl84YCLUXFX0uZWM3RaTTqK_97MYyGKq3vhfOdwOIQcAzsDEPJ8xhgDKQwDzXR6YYeMQAnIcsXyXTJaydlK3ycHMc4ZEyCLfESenzD4xtd28H1H-4be2WDpDC19C35hw1e6vVvWa3nRO2wj_fTDK208to7aztFoB2xbPyDtq4jhYx0VD8leY9uIR9s7Jo9Xlw-Tm2x6f307uZhmtZDFkCEoZWzFnVQ1co4FApOqAMutzR23DJ3mqE1jcyVVaq1E5Yq80qaARgotxuR0k5t6vi8xDuXCxzoVsh32y1hCrnMBxjCe0JNf6Lxfhi61S5TSHIwQJlGwoerQxxiwKbdLlMDK1dbln62Th288MbHdC4Yfyf-avgHjZX9x</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Demidov, A. B.</creator><creator>Sheberstov, S. V.</creator><creator>Vazyulya, S. V.</creator><creator>Artemiev, V. A.</creator><creator>Mosharov, S. A.</creator><creator>Khrapko, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20161101</creationdate><title>Verification of Kara Sea primary production models with field and satellite observations</title><author>Demidov, A. B. ; Sheberstov, S. V. ; Vazyulya, S. V. ; Artemiev, V. A. ; Mosharov, S. A. ; Khrapko, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e1557ab2d45ce22e9e104591a2aa8d2a0ed62e67fa854503153bd98b6791f4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Autumn</topic><topic>Biogeochemistry</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Marine</topic><topic>Marine Biology</topic><topic>Mathematical models</topic><topic>Oceanography</topic><topic>Primary production</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demidov, A. B.</creatorcontrib><creatorcontrib>Sheberstov, S. V.</creatorcontrib><creatorcontrib>Vazyulya, S. V.</creatorcontrib><creatorcontrib>Artemiev, V. A.</creatorcontrib><creatorcontrib>Mosharov, S. A.</creatorcontrib><creatorcontrib>Khrapko, A. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Oceanology (Washington. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demidov, A. B.</au><au>Sheberstov, S. V.</au><au>Vazyulya, S. V.</au><au>Artemiev, V. A.</au><au>Mosharov, S. A.</au><au>Khrapko, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verification of Kara Sea primary production models with field and satellite observations</atitle><jtitle>Oceanology (Washington. 1965)</jtitle><stitle>Oceanology</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>56</volume><issue>6</issue><spage>799</spage><epage>808</epage><pages>799-808</pages><issn>0001-4370</issn><eissn>1531-8508</eissn><abstract>The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated primary production (IPP) in autumn by a factor of 2 and 2.5 with shipboard data as input parameters; the rootmean-square difference (RMSD) was 0.29 and 0.39, respectively. In summer, the efficiency of Ψ-Mod decreased by a factor of 1.5 (RMSD = 0.57), while the predictive capacity of the KSDRM remained the same (RMSD = 0.31). In the Laptev Sea in autumn, the KSDRM performed better than Ψ-Mod (the RMSD was 0.24 and 0.41, respectively). There was no sufficient decrease in the predictive skill of either algorithm when MODIS-Aqua data were used as input parameters. Thus, Ψ-Mod, being a simple and precise algorithm, can be recommended for evaluating the annual IPP in the Kara Sea and for studying its long-term variability using satellite data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001437016060011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4370
ispartof Oceanology (Washington. 1965), 2016-11, Vol.56 (6), p.799-808
issn 0001-4370
1531-8508
language eng
recordid cdi_proquest_miscellaneous_1868317702
source Springer Nature - Complete Springer Journals
subjects Algorithms
Autumn
Biogeochemistry
Earth and Environmental Science
Earth Sciences
Marine
Marine Biology
Mathematical models
Oceanography
Primary production
Water column
Water depth
title Verification of Kara Sea primary production models with field and satellite observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verification%20of%20Kara%20Sea%20primary%20production%20models%20with%20field%20and%20satellite%20observations&rft.jtitle=Oceanology%20(Washington.%201965)&rft.au=Demidov,%20A.%20B.&rft.date=2016-11-01&rft.volume=56&rft.issue=6&rft.spage=799&rft.epage=808&rft.pages=799-808&rft.issn=0001-4370&rft.eissn=1531-8508&rft_id=info:doi/10.1134/S0001437016060011&rft_dat=%3Cproquest_cross%3E1868317702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856217337&rft_id=info:pmid/&rfr_iscdi=true