High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production

To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2017, Vol.44 (1), p.49-61
Hauptverfasser: Sampaio, Pedro N., Sales, Kevin C., Rosa, Filipa O., Lopes, Marta B., Calado, Cecília R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 49
container_title Journal of industrial microbiology & biotechnology
container_volume 44
creator Sampaio, Pedro N.
Sales, Kevin C.
Rosa, Filipa O.
Lopes, Marta B.
Calado, Cecília R. C.
description To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the recombinant culture in a rapid, economic, and high-throughput (using a microplate system) mode. Multivariate data analysis on the MIR spectra of culture samples was conducted. Principal component analysis (PCA) enabled capturing the general metabolic status of the yeast cells, as replicated samples appear grouped together in the score plot and groups of culture samples according to the main growth phase can be clearly distinguished. The PCA-loading vectors also revealed spectral regions, and the corresponding chemical functional groups and biomolecules that mostly contributed for the cell biomolecular fingerprint associated with the culture growth phase. These data were corroborated by the analysis of the samples’ second derivative spectra. Partial least square (PLS) regression models built based on the MIR spectra showed high predictive ability for estimating the bioprocess critical variables: biomass ( R 2  = 0.99, RMSEP 2.8%); cyprosin activity ( R 2  = 0.98, RMSEP 3.9%); glucose ( R 2  = 0.93, RMSECV 7.2%); galactose ( R 2  = 0.97, RMSEP 4.6%); ethanol ( R 2  = 0.97, RMSEP 5.3%); and acetate ( R 2  = 0.95, RMSEP 7.0%). In conclusion, high-throughput MIR spectroscopy and multivariate data analysis were effective in identifying the main growth phases and specific cyprosin production phases along the yeast culture as well as in quantifying the critical variables of the process. This knowledge will promote future process optimization and control the recombinant cyprosin bioprocess according to Quality by Design framework.
doi_str_mv 10.1007/s10295-016-1865-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868308413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839109914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c005f8731074ad45905609865ddbff68cf16cf5f1bb46050ce6cdae55b4195813</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRrK8f4EYCbtyM3pt5JUsRq4WCKLoOk8lMm9ImNZMs-u-9pSoiCK7ugfnu48xh7BzhGgHMTURIc8UBNcdMk9hjRyiN5koJtU9aaMOVFGrEjmNcAIAyJj1ko9RkAmSKR-z5sZ7NeT_v2mE2Xw99Mn6dvPDSRl8lZd2uu9b5GBPb2OUm1jFpQ9J5167KurFNn7gNEbFuEirV4Pq6bU7ZQbDL6M8-6wl7G9-_3j3y6dPD5O52yp000HNHx4TMCAQjbSVVDkpDTi6qqgxBZy6gdkEFLEupQYHz2lXWK1VKzFWG4oRd7ebS6vfBx75Y1dH55dI2vh1iQT9CJjOJ4h-oyBHyHCWhl7_QRTt05H5LqSwVIlM5UbijHLmPnQ_FuqtXttsUCMU2mmIXTUHRbA8hQT0Xn5OHcuWr746vLAhId0Ckp2bmux-r_5z6AQdEmDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858233859</pqid></control><display><type>article</type><title>High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sampaio, Pedro N. ; Sales, Kevin C. ; Rosa, Filipa O. ; Lopes, Marta B. ; Calado, Cecília R. C.</creator><creatorcontrib>Sampaio, Pedro N. ; Sales, Kevin C. ; Rosa, Filipa O. ; Lopes, Marta B. ; Calado, Cecília R. C.</creatorcontrib><description>To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the recombinant culture in a rapid, economic, and high-throughput (using a microplate system) mode. Multivariate data analysis on the MIR spectra of culture samples was conducted. Principal component analysis (PCA) enabled capturing the general metabolic status of the yeast cells, as replicated samples appear grouped together in the score plot and groups of culture samples according to the main growth phase can be clearly distinguished. The PCA-loading vectors also revealed spectral regions, and the corresponding chemical functional groups and biomolecules that mostly contributed for the cell biomolecular fingerprint associated with the culture growth phase. These data were corroborated by the analysis of the samples’ second derivative spectra. Partial least square (PLS) regression models built based on the MIR spectra showed high predictive ability for estimating the bioprocess critical variables: biomass ( R 2  = 0.99, RMSEP 2.8%); cyprosin activity ( R 2  = 0.98, RMSEP 3.9%); glucose ( R 2  = 0.93, RMSECV 7.2%); galactose ( R 2  = 0.97, RMSEP 4.6%); ethanol ( R 2  = 0.97, RMSEP 5.3%); and acetate ( R 2  = 0.95, RMSEP 7.0%). In conclusion, high-throughput MIR spectroscopy and multivariate data analysis were effective in identifying the main growth phases and specific cyprosin production phases along the yeast culture as well as in quantifying the critical variables of the process. This knowledge will promote future process optimization and control the recombinant cyprosin bioprocess according to Quality by Design framework.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-016-1865-0</identifier><identifier>PMID: 27830421</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aspartic Acid Endopeptidases - biosynthesis ; Biochemistry ; Bioinformatics ; Biomass ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Biotechnology - methods ; Cell culture ; Cell Culture and Bioengineering - Original Paper ; Data analysis ; Ethanol ; Ethanol - metabolism ; Fermentation ; Galactose ; Genetic Engineering ; Genetic recombination ; Glucose ; Glucose - analysis ; Inorganic Chemistry ; Knowledge ; Least-Squares Analysis ; Life Sciences ; Mean square errors ; Microbiology ; Optimization ; Principal Component Analysis ; Principal components analysis ; Recombinant Proteins - biosynthesis ; Regression Analysis ; Saccharomyces cerevisiae ; Spectrophotometry, Infrared ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared - methods ; Spectrum analysis ; Studies ; Temperature ; Trends ; Yeast ; Yeasts</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2017, Vol.44 (1), p.49-61</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2016</rights><rights>Journal of Industrial Microbiology &amp; Biotechnology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c005f8731074ad45905609865ddbff68cf16cf5f1bb46050ce6cdae55b4195813</citedby><cites>FETCH-LOGICAL-c470t-c005f8731074ad45905609865ddbff68cf16cf5f1bb46050ce6cdae55b4195813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-016-1865-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-016-1865-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27830421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sampaio, Pedro N.</creatorcontrib><creatorcontrib>Sales, Kevin C.</creatorcontrib><creatorcontrib>Rosa, Filipa O.</creatorcontrib><creatorcontrib>Lopes, Marta B.</creatorcontrib><creatorcontrib>Calado, Cecília R. C.</creatorcontrib><title>High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the recombinant culture in a rapid, economic, and high-throughput (using a microplate system) mode. Multivariate data analysis on the MIR spectra of culture samples was conducted. Principal component analysis (PCA) enabled capturing the general metabolic status of the yeast cells, as replicated samples appear grouped together in the score plot and groups of culture samples according to the main growth phase can be clearly distinguished. The PCA-loading vectors also revealed spectral regions, and the corresponding chemical functional groups and biomolecules that mostly contributed for the cell biomolecular fingerprint associated with the culture growth phase. These data were corroborated by the analysis of the samples’ second derivative spectra. Partial least square (PLS) regression models built based on the MIR spectra showed high predictive ability for estimating the bioprocess critical variables: biomass ( R 2  = 0.99, RMSEP 2.8%); cyprosin activity ( R 2  = 0.98, RMSEP 3.9%); glucose ( R 2  = 0.93, RMSECV 7.2%); galactose ( R 2  = 0.97, RMSEP 4.6%); ethanol ( R 2  = 0.97, RMSEP 5.3%); and acetate ( R 2  = 0.95, RMSEP 7.0%). In conclusion, high-throughput MIR spectroscopy and multivariate data analysis were effective in identifying the main growth phases and specific cyprosin production phases along the yeast culture as well as in quantifying the critical variables of the process. This knowledge will promote future process optimization and control the recombinant cyprosin bioprocess according to Quality by Design framework.</description><subject>Aspartic Acid Endopeptidases - biosynthesis</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Cell culture</subject><subject>Cell Culture and Bioengineering - Original Paper</subject><subject>Data analysis</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Galactose</subject><subject>Genetic Engineering</subject><subject>Genetic recombination</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>Inorganic Chemistry</subject><subject>Knowledge</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Mean square errors</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Regression Analysis</subject><subject>Saccharomyces cerevisiae</subject><subject>Spectrophotometry, Infrared</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Temperature</subject><subject>Trends</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLw0AUhQdRrK8f4EYCbtyM3pt5JUsRq4WCKLoOk8lMm9ImNZMs-u-9pSoiCK7ugfnu48xh7BzhGgHMTURIc8UBNcdMk9hjRyiN5koJtU9aaMOVFGrEjmNcAIAyJj1ko9RkAmSKR-z5sZ7NeT_v2mE2Xw99Mn6dvPDSRl8lZd2uu9b5GBPb2OUm1jFpQ9J5167KurFNn7gNEbFuEirV4Pq6bU7ZQbDL6M8-6wl7G9-_3j3y6dPD5O52yp000HNHx4TMCAQjbSVVDkpDTi6qqgxBZy6gdkEFLEupQYHz2lXWK1VKzFWG4oRd7ebS6vfBx75Y1dH55dI2vh1iQT9CJjOJ4h-oyBHyHCWhl7_QRTt05H5LqSwVIlM5UbijHLmPnQ_FuqtXttsUCMU2mmIXTUHRbA8hQT0Xn5OHcuWr746vLAhId0Ckp2bmux-r_5z6AQdEmDs</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Sampaio, Pedro N.</creator><creator>Sales, Kevin C.</creator><creator>Rosa, Filipa O.</creator><creator>Lopes, Marta B.</creator><creator>Calado, Cecília R. C.</creator><general>Springer Berlin Heidelberg</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>2017</creationdate><title>High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production</title><author>Sampaio, Pedro N. ; Sales, Kevin C. ; Rosa, Filipa O. ; Lopes, Marta B. ; Calado, Cecília R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c005f8731074ad45905609865ddbff68cf16cf5f1bb46050ce6cdae55b4195813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspartic Acid Endopeptidases - biosynthesis</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Cell culture</topic><topic>Cell Culture and Bioengineering - Original Paper</topic><topic>Data analysis</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Galactose</topic><topic>Genetic Engineering</topic><topic>Genetic recombination</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>Inorganic Chemistry</topic><topic>Knowledge</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Mean square errors</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Regression Analysis</topic><topic>Saccharomyces cerevisiae</topic><topic>Spectrophotometry, Infrared</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Temperature</topic><topic>Trends</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampaio, Pedro N.</creatorcontrib><creatorcontrib>Sales, Kevin C.</creatorcontrib><creatorcontrib>Rosa, Filipa O.</creatorcontrib><creatorcontrib>Lopes, Marta B.</creatorcontrib><creatorcontrib>Calado, Cecília R. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampaio, Pedro N.</au><au>Sales, Kevin C.</au><au>Rosa, Filipa O.</au><au>Lopes, Marta B.</au><au>Calado, Cecília R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2017</date><risdate>2017</risdate><volume>44</volume><issue>1</issue><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the recombinant culture in a rapid, economic, and high-throughput (using a microplate system) mode. Multivariate data analysis on the MIR spectra of culture samples was conducted. Principal component analysis (PCA) enabled capturing the general metabolic status of the yeast cells, as replicated samples appear grouped together in the score plot and groups of culture samples according to the main growth phase can be clearly distinguished. The PCA-loading vectors also revealed spectral regions, and the corresponding chemical functional groups and biomolecules that mostly contributed for the cell biomolecular fingerprint associated with the culture growth phase. These data were corroborated by the analysis of the samples’ second derivative spectra. Partial least square (PLS) regression models built based on the MIR spectra showed high predictive ability for estimating the bioprocess critical variables: biomass ( R 2  = 0.99, RMSEP 2.8%); cyprosin activity ( R 2  = 0.98, RMSEP 3.9%); glucose ( R 2  = 0.93, RMSECV 7.2%); galactose ( R 2  = 0.97, RMSEP 4.6%); ethanol ( R 2  = 0.97, RMSEP 5.3%); and acetate ( R 2  = 0.95, RMSEP 7.0%). In conclusion, high-throughput MIR spectroscopy and multivariate data analysis were effective in identifying the main growth phases and specific cyprosin production phases along the yeast culture as well as in quantifying the critical variables of the process. This knowledge will promote future process optimization and control the recombinant cyprosin bioprocess according to Quality by Design framework.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27830421</pmid><doi>10.1007/s10295-016-1865-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2017, Vol.44 (1), p.49-61
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1868308413
source MEDLINE; Oxford Journals Open Access Collection; SpringerLink Journals - AutoHoldings
subjects Aspartic Acid Endopeptidases - biosynthesis
Biochemistry
Bioinformatics
Biomass
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Biotechnology - methods
Cell culture
Cell Culture and Bioengineering - Original Paper
Data analysis
Ethanol
Ethanol - metabolism
Fermentation
Galactose
Genetic Engineering
Genetic recombination
Glucose
Glucose - analysis
Inorganic Chemistry
Knowledge
Least-Squares Analysis
Life Sciences
Mean square errors
Microbiology
Optimization
Principal Component Analysis
Principal components analysis
Recombinant Proteins - biosynthesis
Regression Analysis
Saccharomyces cerevisiae
Spectrophotometry, Infrared
Spectroscopy
Spectroscopy, Fourier Transform Infrared - methods
Spectrum analysis
Studies
Temperature
Trends
Yeast
Yeasts
title High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20FTIR-based%20bioprocess%20analysis%20of%20recombinant%20cyprosin%20production&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Sampaio,%20Pedro%20N.&rft.date=2017&rft.volume=44&rft.issue=1&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-016-1865-0&rft_dat=%3Cproquest_cross%3E1839109914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858233859&rft_id=info:pmid/27830421&rfr_iscdi=true