Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability
Production of ethanol from xylose by recombinant Saccharomyces cerevisiae is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing Scheffersomyces stipitis xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolutio...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2017-02, Vol.101 (4), p.1753-1767 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1767 |
---|---|
container_issue | 4 |
container_start_page | 1753 |
container_title | Applied microbiology and biotechnology |
container_volume | 101 |
creator | Zeng, Wei-Yi Tang, Yue-Qin Gou, Min Sun, Zhao-Yong Xia, Zi-Yuan Kida, Kenji |
description | Production of ethanol from xylose by recombinant
Saccharomyces cerevisiae
is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing
Scheffersomyces stipitis
xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolution on xylose; this approach generated populations with the significantly improved cell growth and ethanol production rate. Mutants were isolated, and the best one was used for sporulation to generate eight stable mutant strains with improved xylose fermentation ability. They were used in a microarray assay to study the molecular basis of the enhanced phenotype. The enriched transcriptional differences among the eight mutant strains and the native strain revealed novel responses to xylose, which likely contributes to the improved xylose utilization. The upregulated vitamin B1 and B6 biosynthesis indicated that thiamine served as an important cofactor in xylose metabolism and may alleviate the redox stress. The increased expression of genes involved in sulfur amino acid biosynthesis and the decreased expression of genes related to Fe(II) transport may alleviate redox stress as well. Meanwhile, it was remarkable that several glucose-repressible genes, including genes of the galactose metabolism, gluconeogenesis, and ethanol catabolism, had a lower expression level after adaptive evolution. Concomitantly, the expression levels of two regulators of the glucose signaling pathway, Rgs2 and Sip4, decreased, indicating a reshaped signaling pathway to xylose after adaptive evolution. Our findings provide new targets for construction of a superior bioethanol producing strain through inverse metabolic engineering. |
doi_str_mv | 10.1007/s00253-016-8046-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868305981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551030336</galeid><sourcerecordid>A551030336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-3b37a807108010900fa75251d66cb4c9c7b43a5e12f26cc2a1853baa87027c5d3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEokPhAdggS2xgkXJtx45nWY34qVQJicLacpybqaskDrYzNLwEr4xHU34GgYS8sGx_5-je61MUTymcUYD6VQRggpdAZamgkuVyr1jRirMSJK3uFyugtShrsVYnxaMYbwAoU1I-LE6YAqioYKvi28YPkwkmuR2SFMwYbXBT8gNGEnCHpiej32FPcOf7OTk_mrCQmMmEW5ch0_opYUuahVwZa69N8MNi84PFrHfRGSRfXLombphCdmrJ7dL7iCSb9e6r2VsSaybT5GNaHhcPOtNHfHK3nxaf3rz-uHlXXr5_e7E5vyytqHgqecNro6CmoIDCGqAztWCCtlLaprJrWzcVNwIp65i0lhmqBG-MUTWw2oqWnxYvDr65qM8zxqQHFy32vRnRz1FTJRWHPDr6H6igcl1VnGf0-R_ojZ_DmBvZG-YCZaXUL2pretRu7Hwep92b6nMhKHDgXGbq7C9UXi0OzvoRO5fvjwQvjwSZSXibtmaOUV9cfThm6YG1wccYsNNTcEP-Wk1B77OlD9nSOVt6ny29ZM2zu-bmZsD2p-JHmDLADkDMT-MWw2_d_9P1O8aA2ns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865256488</pqid></control><display><type>article</type><title>Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zeng, Wei-Yi ; Tang, Yue-Qin ; Gou, Min ; Sun, Zhao-Yong ; Xia, Zi-Yuan ; Kida, Kenji</creator><creatorcontrib>Zeng, Wei-Yi ; Tang, Yue-Qin ; Gou, Min ; Sun, Zhao-Yong ; Xia, Zi-Yuan ; Kida, Kenji</creatorcontrib><description>Production of ethanol from xylose by recombinant
Saccharomyces cerevisiae
is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing
Scheffersomyces stipitis
xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolution on xylose; this approach generated populations with the significantly improved cell growth and ethanol production rate. Mutants were isolated, and the best one was used for sporulation to generate eight stable mutant strains with improved xylose fermentation ability. They were used in a microarray assay to study the molecular basis of the enhanced phenotype. The enriched transcriptional differences among the eight mutant strains and the native strain revealed novel responses to xylose, which likely contributes to the improved xylose utilization. The upregulated vitamin B1 and B6 biosynthesis indicated that thiamine served as an important cofactor in xylose metabolism and may alleviate the redox stress. The increased expression of genes involved in sulfur amino acid biosynthesis and the decreased expression of genes related to Fe(II) transport may alleviate redox stress as well. Meanwhile, it was remarkable that several glucose-repressible genes, including genes of the galactose metabolism, gluconeogenesis, and ethanol catabolism, had a lower expression level after adaptive evolution. Concomitantly, the expression levels of two regulators of the glucose signaling pathway, Rgs2 and Sip4, decreased, indicating a reshaped signaling pathway to xylose after adaptive evolution. Our findings provide new targets for construction of a superior bioethanol producing strain through inverse metabolic engineering.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-8046-y</identifier><identifier>PMID: 28004152</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Bioenergy and Biofuels ; Biofuels ; Biological Evolution ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Dehydrogenases ; Ethanol ; Ethanol - metabolism ; Evolution & development ; Fermentation ; Gene expression ; Genetic engineering ; Genotype & phenotype ; Glucose ; Glycerol ; Life Sciences ; Lignocellulose ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Monosaccharides ; Physiological aspects ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Studies ; Sugar ; Sulfur ; Transcriptome - genetics ; Xylitol ; Xylose - metabolism ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2017-02, Vol.101 (4), p.1753-1767</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-3b37a807108010900fa75251d66cb4c9c7b43a5e12f26cc2a1853baa87027c5d3</citedby><cites>FETCH-LOGICAL-c543t-3b37a807108010900fa75251d66cb4c9c7b43a5e12f26cc2a1853baa87027c5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-8046-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-8046-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28004152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Wei-Yi</creatorcontrib><creatorcontrib>Tang, Yue-Qin</creatorcontrib><creatorcontrib>Gou, Min</creatorcontrib><creatorcontrib>Sun, Zhao-Yong</creatorcontrib><creatorcontrib>Xia, Zi-Yuan</creatorcontrib><creatorcontrib>Kida, Kenji</creatorcontrib><title>Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Production of ethanol from xylose by recombinant
Saccharomyces cerevisiae
is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing
Scheffersomyces stipitis
xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolution on xylose; this approach generated populations with the significantly improved cell growth and ethanol production rate. Mutants were isolated, and the best one was used for sporulation to generate eight stable mutant strains with improved xylose fermentation ability. They were used in a microarray assay to study the molecular basis of the enhanced phenotype. The enriched transcriptional differences among the eight mutant strains and the native strain revealed novel responses to xylose, which likely contributes to the improved xylose utilization. The upregulated vitamin B1 and B6 biosynthesis indicated that thiamine served as an important cofactor in xylose metabolism and may alleviate the redox stress. The increased expression of genes involved in sulfur amino acid biosynthesis and the decreased expression of genes related to Fe(II) transport may alleviate redox stress as well. Meanwhile, it was remarkable that several glucose-repressible genes, including genes of the galactose metabolism, gluconeogenesis, and ethanol catabolism, had a lower expression level after adaptive evolution. Concomitantly, the expression levels of two regulators of the glucose signaling pathway, Rgs2 and Sip4, decreased, indicating a reshaped signaling pathway to xylose after adaptive evolution. Our findings provide new targets for construction of a superior bioethanol producing strain through inverse metabolic engineering.</description><subject>Amino acids</subject><subject>Bioenergy and Biofuels</subject><subject>Biofuels</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Dehydrogenases</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Evolution & development</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genotype & phenotype</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monosaccharides</subject><subject>Physiological aspects</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Studies</subject><subject>Sugar</subject><subject>Sulfur</subject><subject>Transcriptome - genetics</subject><subject>Xylitol</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1u1DAUhSMEokPhAdggS2xgkXJtx45nWY34qVQJicLacpybqaskDrYzNLwEr4xHU34GgYS8sGx_5-je61MUTymcUYD6VQRggpdAZamgkuVyr1jRirMSJK3uFyugtShrsVYnxaMYbwAoU1I-LE6YAqioYKvi28YPkwkmuR2SFMwYbXBT8gNGEnCHpiej32FPcOf7OTk_mrCQmMmEW5ch0_opYUuahVwZa69N8MNi84PFrHfRGSRfXLombphCdmrJ7dL7iCSb9e6r2VsSaybT5GNaHhcPOtNHfHK3nxaf3rz-uHlXXr5_e7E5vyytqHgqecNro6CmoIDCGqAztWCCtlLaprJrWzcVNwIp65i0lhmqBG-MUTWw2oqWnxYvDr65qM8zxqQHFy32vRnRz1FTJRWHPDr6H6igcl1VnGf0-R_ojZ_DmBvZG-YCZaXUL2pretRu7Hwep92b6nMhKHDgXGbq7C9UXi0OzvoRO5fvjwQvjwSZSXibtmaOUV9cfThm6YG1wccYsNNTcEP-Wk1B77OlD9nSOVt6ny29ZM2zu-bmZsD2p-JHmDLADkDMT-MWw2_d_9P1O8aA2ns</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Zeng, Wei-Yi</creator><creator>Tang, Yue-Qin</creator><creator>Gou, Min</creator><creator>Sun, Zhao-Yong</creator><creator>Xia, Zi-Yuan</creator><creator>Kida, Kenji</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20170201</creationdate><title>Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability</title><author>Zeng, Wei-Yi ; Tang, Yue-Qin ; Gou, Min ; Sun, Zhao-Yong ; Xia, Zi-Yuan ; Kida, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-3b37a807108010900fa75251d66cb4c9c7b43a5e12f26cc2a1853baa87027c5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acids</topic><topic>Bioenergy and Biofuels</topic><topic>Biofuels</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Dehydrogenases</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Evolution & development</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genotype & phenotype</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monosaccharides</topic><topic>Physiological aspects</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Studies</topic><topic>Sugar</topic><topic>Sulfur</topic><topic>Transcriptome - genetics</topic><topic>Xylitol</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Wei-Yi</creatorcontrib><creatorcontrib>Tang, Yue-Qin</creatorcontrib><creatorcontrib>Gou, Min</creatorcontrib><creatorcontrib>Sun, Zhao-Yong</creatorcontrib><creatorcontrib>Xia, Zi-Yuan</creatorcontrib><creatorcontrib>Kida, Kenji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Wei-Yi</au><au>Tang, Yue-Qin</au><au>Gou, Min</au><au>Sun, Zhao-Yong</au><au>Xia, Zi-Yuan</au><au>Kida, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>101</volume><issue>4</issue><spage>1753</spage><epage>1767</epage><pages>1753-1767</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Production of ethanol from xylose by recombinant
Saccharomyces cerevisiae
is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing
Scheffersomyces stipitis
xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolution on xylose; this approach generated populations with the significantly improved cell growth and ethanol production rate. Mutants were isolated, and the best one was used for sporulation to generate eight stable mutant strains with improved xylose fermentation ability. They were used in a microarray assay to study the molecular basis of the enhanced phenotype. The enriched transcriptional differences among the eight mutant strains and the native strain revealed novel responses to xylose, which likely contributes to the improved xylose utilization. The upregulated vitamin B1 and B6 biosynthesis indicated that thiamine served as an important cofactor in xylose metabolism and may alleviate the redox stress. The increased expression of genes involved in sulfur amino acid biosynthesis and the decreased expression of genes related to Fe(II) transport may alleviate redox stress as well. Meanwhile, it was remarkable that several glucose-repressible genes, including genes of the galactose metabolism, gluconeogenesis, and ethanol catabolism, had a lower expression level after adaptive evolution. Concomitantly, the expression levels of two regulators of the glucose signaling pathway, Rgs2 and Sip4, decreased, indicating a reshaped signaling pathway to xylose after adaptive evolution. Our findings provide new targets for construction of a superior bioethanol producing strain through inverse metabolic engineering.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28004152</pmid><doi>10.1007/s00253-016-8046-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2017-02, Vol.101 (4), p.1753-1767 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1868305981 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino acids Bioenergy and Biofuels Biofuels Biological Evolution Biomedical and Life Sciences Biosynthesis Biotechnology Dehydrogenases Ethanol Ethanol - metabolism Evolution & development Fermentation Gene expression Genetic engineering Genotype & phenotype Glucose Glycerol Life Sciences Lignocellulose Metabolism Microbial Genetics and Genomics Microbiology Monosaccharides Physiological aspects Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Studies Sugar Sulfur Transcriptome - genetics Xylitol Xylose - metabolism Yeast |
title | Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptomes%20reveal%20novel%20evolutionary%20strategies%20adopted%20by%20Saccharomyces%20cerevisiae%20with%20improved%20xylose%20utilization%20capability&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zeng,%20Wei-Yi&rft.date=2017-02-01&rft.volume=101&rft.issue=4&rft.spage=1753&rft.epage=1767&rft.pages=1753-1767&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-8046-y&rft_dat=%3Cgale_proqu%3EA551030336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865256488&rft_id=info:pmid/28004152&rft_galeid=A551030336&rfr_iscdi=true |