Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries
In this paper, we report the synthesis of a Li sub(4)Ti sub(5)O sub(12)/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was ob...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2015-12, Vol.4 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | SpringerPlus |
container_volume | 4 |
creator | Medina, P A Zheng, H Fahlman, B D Annamalai, P Swartbooi, A Roux, L Mathe, M K |
description | In this paper, we report the synthesis of a Li sub(4)Ti sub(5)O sub(12)/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g super(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g super(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega ) compared with LTO (108.05 Omega ), and higher exchange current density (j = 1.1 10 super(-3) mA cm super(-2))-about 20 times than those of the LTO (j = 2.38 10 super(-4) mA cm super(-2)). |
doi_str_mv | 10.1186/s40064-015-1438-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868303615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868303615</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18683036153</originalsourceid><addsrcrecordid>eNqVj8FuwjAQRK1KlYooH9DbHsnBsIudkJ6rVhyQuHAucugCRomdep3_b0T5AebyRk9zGaXeCBdEdbUUi1hZjVRqsqbW-KQmK3o3mmqkFzUTueKYak12jRP1vfUgQzO3xf6_lMXuRloVy3Ny_YUDQ3AhJt80MQgcY9dH8ZnBCYz-hwVOMUHr88UPHfgYoHE5c_Isr-r55Frh2Z1TNf_63H9sdJ_i78CSD52XI7etCxwHOYwPaoOmotI8MP0D06lLug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868303615</pqid></control><display><type>article</type><title>Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries</title><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Medina, P A ; Zheng, H ; Fahlman, B D ; Annamalai, P ; Swartbooi, A ; Roux, L ; Mathe, M K</creator><creatorcontrib>Medina, P A ; Zheng, H ; Fahlman, B D ; Annamalai, P ; Swartbooi, A ; Roux, L ; Mathe, M K</creatorcontrib><description>In this paper, we report the synthesis of a Li sub(4)Ti sub(5)O sub(12)/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g super(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g super(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega ) compared with LTO (108.05 Omega ), and higher exchange current density (j = 1.1 10 super(-3) mA cm super(-2))-about 20 times than those of the LTO (j = 2.38 10 super(-4) mA cm super(-2)).</description><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-015-1438-0</identifier><language>eng</language><ispartof>SpringerPlus, 2015-12, Vol.4 (1), p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Medina, P A</creatorcontrib><creatorcontrib>Zheng, H</creatorcontrib><creatorcontrib>Fahlman, B D</creatorcontrib><creatorcontrib>Annamalai, P</creatorcontrib><creatorcontrib>Swartbooi, A</creatorcontrib><creatorcontrib>Roux, L</creatorcontrib><creatorcontrib>Mathe, M K</creatorcontrib><title>Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries</title><title>SpringerPlus</title><description>In this paper, we report the synthesis of a Li sub(4)Ti sub(5)O sub(12)/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g super(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g super(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega ) compared with LTO (108.05 Omega ), and higher exchange current density (j = 1.1 10 super(-3) mA cm super(-2))-about 20 times than those of the LTO (j = 2.38 10 super(-4) mA cm super(-2)).</description><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVj8FuwjAQRK1KlYooH9DbHsnBsIudkJ6rVhyQuHAucugCRomdep3_b0T5AebyRk9zGaXeCBdEdbUUi1hZjVRqsqbW-KQmK3o3mmqkFzUTueKYak12jRP1vfUgQzO3xf6_lMXuRloVy3Ny_YUDQ3AhJt80MQgcY9dH8ZnBCYz-hwVOMUHr88UPHfgYoHE5c_Isr-r55Frh2Z1TNf_63H9sdJ_i78CSD52XI7etCxwHOYwPaoOmotI8MP0D06lLug</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Medina, P A</creator><creator>Zheng, H</creator><creator>Fahlman, B D</creator><creator>Annamalai, P</creator><creator>Swartbooi, A</creator><creator>Roux, L</creator><creator>Mathe, M K</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20151201</creationdate><title>Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries</title><author>Medina, P A ; Zheng, H ; Fahlman, B D ; Annamalai, P ; Swartbooi, A ; Roux, L ; Mathe, M K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18683036153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medina, P A</creatorcontrib><creatorcontrib>Zheng, H</creatorcontrib><creatorcontrib>Fahlman, B D</creatorcontrib><creatorcontrib>Annamalai, P</creatorcontrib><creatorcontrib>Swartbooi, A</creatorcontrib><creatorcontrib>Roux, L</creatorcontrib><creatorcontrib>Mathe, M K</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medina, P A</au><au>Zheng, H</au><au>Fahlman, B D</au><au>Annamalai, P</au><au>Swartbooi, A</au><au>Roux, L</au><au>Mathe, M K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries</atitle><jtitle>SpringerPlus</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2193-1801</eissn><abstract>In this paper, we report the synthesis of a Li sub(4)Ti sub(5)O sub(12)/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g super(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g super(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega ) compared with LTO (108.05 Omega ), and higher exchange current density (j = 1.1 10 super(-3) mA cm super(-2))-about 20 times than those of the LTO (j = 2.38 10 super(-4) mA cm super(-2)).</abstract><doi>10.1186/s40064-015-1438-0</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2193-1801 |
ispartof | SpringerPlus, 2015-12, Vol.4 (1), p.1-7 |
issn | 2193-1801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1868303615 |
source | PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
title | Li sub(4)Ti sub(5)O sub(12)/graphene nanoribbons composite as anodes for lithium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%20sub(4)Ti%20sub(5)O%20sub(12)/graphene%20nanoribbons%20composite%20as%20anodes%20for%20lithium%20ion%20batteries&rft.jtitle=SpringerPlus&rft.au=Medina,%20P%20A&rft.date=2015-12-01&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-015-1438-0&rft_dat=%3Cproquest%3E1868303615%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868303615&rft_id=info:pmid/&rfr_iscdi=true |