In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model

Aim The aim of this study was to investigate the capacity of adipose‐derived stem cells (ADSC), grown in serum‐free conditions, to regenerate bone around titanium discs with different titanium surfaces. Material and methods Ovine ADSC (oADSC) were isolated from seven sheep and cultured using serum‐f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical oral implants research 2017-01, Vol.28 (1), p.64-75
Hauptverfasser: Godoy Zanicotti, Diogo, Coates, Dawn Elizabeth, Duncan, Warwick John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 64
container_title Clinical oral implants research
container_volume 28
creator Godoy Zanicotti, Diogo
Coates, Dawn Elizabeth
Duncan, Warwick John
description Aim The aim of this study was to investigate the capacity of adipose‐derived stem cells (ADSC), grown in serum‐free conditions, to regenerate bone around titanium discs with different titanium surfaces. Material and methods Ovine ADSC (oADSC) were isolated from seven sheep and cultured using serum‐free and osteogenic conditions. Prior to in vivo testing, the growth and osteogenic behaviour of these cells were analysed in vitro using cell proliferation and extracellular matrix mineralisation assays. The bone regenerative capacity of autologous oADSC was evaluated in vivo on titanium discs in a sheep femur epicondyle model. Machined (MTi) and alumina‐blasted (ABTi) titanium discs were used. Bone regeneration within the defects was evaluated after 1 month using histology and histomorphometry. PKH26 cell‐tracking dye was used to verify the persistence of oADSC in the surgical wound. Results oADSC sourced from five of seven sheep differentiated into osteoblast‐like cells. Cellular proliferation was reduced only for osteogenically induced oADSC (oOS‐ADSC) grown on ABTi, compared to non‐induced oADSC grown on ABTi and tissue culture polystyrene (P = 0.03 and 0.02 respectively). There was no significant difference for in vitro mineralisation assays comparing oADSC with oOS‐ADSC, regardless of implant surface type. oADSC labelled with PKH26 were detected 1 month after surgery within the defect. There was no difference in bone regeneration between the bone defects treated with oADSC vs. just blood clot. Conclusion After 1‐month healing, the use of autologous oADSC did not improve bone regeneration in defects containing titanium devices with different surfaces.
doi_str_mv 10.1111/clr.12761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868303127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826651520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3861-c63bcee0a38cd63b4d034764f45b8a30446a1698ed113f51dccb828fd1999ee63</originalsourceid><addsrcrecordid>eNqN0V-LFSEYBnCJoj1tXfQFQuimoNn11dHjXC6H_iwcCKKuxdF3Ti4zetKZsyzd9BH6jH2S3M7WRRAkgiI_HtSHkKfAzqCOczfmM-BrBffIChRjDZMM7pMV65hs1qDghDwq5YoxpjrdPSQnXGkppOQr8vUy0kM4JNqniDTjDiNmO4cUaZ1zmG0My0Q9HoLDQpcS4o4WzMv049v3ISPSXU7XkVof9qlgPfSYwwE9LTNO1OE4llc0VEDLZ8Q9HXBaMp2Sx_ExeTDYseCTu_WUfHrz-uPmXbN9__Zyc7FtnNAKGqdE7xCZFdr5um89E-1atUMre20Fa1tloT4MPYAYJHjnes314KHrOkQlTsmLY-4-py8LltlModzezEZMSzGglRZM1B_8D8qVkiA5q_T5X_QqLTnWhxjoOGsV51JW9fKoXE6lZBzMPofJ5hsDzNyWZ2p55ld51T67S1z6Cf0f-butCs6P4DqMePPvJLPZfjhG_gSTlaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920462255</pqid></control><display><type>article</type><title>In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Godoy Zanicotti, Diogo ; Coates, Dawn Elizabeth ; Duncan, Warwick John</creator><creatorcontrib>Godoy Zanicotti, Diogo ; Coates, Dawn Elizabeth ; Duncan, Warwick John</creatorcontrib><description>Aim The aim of this study was to investigate the capacity of adipose‐derived stem cells (ADSC), grown in serum‐free conditions, to regenerate bone around titanium discs with different titanium surfaces. Material and methods Ovine ADSC (oADSC) were isolated from seven sheep and cultured using serum‐free and osteogenic conditions. Prior to in vivo testing, the growth and osteogenic behaviour of these cells were analysed in vitro using cell proliferation and extracellular matrix mineralisation assays. The bone regenerative capacity of autologous oADSC was evaluated in vivo on titanium discs in a sheep femur epicondyle model. Machined (MTi) and alumina‐blasted (ABTi) titanium discs were used. Bone regeneration within the defects was evaluated after 1 month using histology and histomorphometry. PKH26 cell‐tracking dye was used to verify the persistence of oADSC in the surgical wound. Results oADSC sourced from five of seven sheep differentiated into osteoblast‐like cells. Cellular proliferation was reduced only for osteogenically induced oADSC (oOS‐ADSC) grown on ABTi, compared to non‐induced oADSC grown on ABTi and tissue culture polystyrene (P = 0.03 and 0.02 respectively). There was no significant difference for in vitro mineralisation assays comparing oADSC with oOS‐ADSC, regardless of implant surface type. oADSC labelled with PKH26 were detected 1 month after surgery within the defect. There was no difference in bone regeneration between the bone defects treated with oADSC vs. just blood clot. Conclusion After 1‐month healing, the use of autologous oADSC did not improve bone regeneration in defects containing titanium devices with different surfaces.</description><identifier>ISSN: 0905-7161</identifier><identifier>EISSN: 1600-0501</identifier><identifier>DOI: 10.1111/clr.12761</identifier><identifier>PMID: 26853552</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Adipose Tissue - cytology ; Aluminum ; Aluminum oxide ; Animals ; Assaying ; Autografts ; Biocompatibility ; biomaterials ; Biomedical materials ; Blood coagulation ; Bone growth ; Bone healing ; Bone histomorphometry ; bone implant interactions ; Bone matrix ; Bone Regeneration ; bone substitutes ; Bone surgery ; Cell culture ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Culture Media, Serum-Free ; Defects ; Dental Implants ; Dentistry ; Devices ; Disks ; Extracellular matrix ; Female ; Femur ; Femur - cytology ; Femur - physiology ; Healing ; Histology ; In vitro methods and tests ; In vivo methods and tests ; Mineralization ; Polystyrene ; Polystyrene resins ; Regeneration ; Regeneration (physiology) ; Sheep ; Stem cells ; Stem Cells - physiology ; Surgical implants ; Tissue culture ; Titanium ; Titanium base alloys ; Wounds</subject><ispartof>Clinical oral implants research, 2017-01, Vol.28 (1), p.64-75</ispartof><rights>2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3861-c63bcee0a38cd63b4d034764f45b8a30446a1698ed113f51dccb828fd1999ee63</citedby><cites>FETCH-LOGICAL-c3861-c63bcee0a38cd63b4d034764f45b8a30446a1698ed113f51dccb828fd1999ee63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fclr.12761$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fclr.12761$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26853552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Godoy Zanicotti, Diogo</creatorcontrib><creatorcontrib>Coates, Dawn Elizabeth</creatorcontrib><creatorcontrib>Duncan, Warwick John</creatorcontrib><title>In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model</title><title>Clinical oral implants research</title><addtitle>Clin Oral Implants Res</addtitle><description>Aim The aim of this study was to investigate the capacity of adipose‐derived stem cells (ADSC), grown in serum‐free conditions, to regenerate bone around titanium discs with different titanium surfaces. Material and methods Ovine ADSC (oADSC) were isolated from seven sheep and cultured using serum‐free and osteogenic conditions. Prior to in vivo testing, the growth and osteogenic behaviour of these cells were analysed in vitro using cell proliferation and extracellular matrix mineralisation assays. The bone regenerative capacity of autologous oADSC was evaluated in vivo on titanium discs in a sheep femur epicondyle model. Machined (MTi) and alumina‐blasted (ABTi) titanium discs were used. Bone regeneration within the defects was evaluated after 1 month using histology and histomorphometry. PKH26 cell‐tracking dye was used to verify the persistence of oADSC in the surgical wound. Results oADSC sourced from five of seven sheep differentiated into osteoblast‐like cells. Cellular proliferation was reduced only for osteogenically induced oADSC (oOS‐ADSC) grown on ABTi, compared to non‐induced oADSC grown on ABTi and tissue culture polystyrene (P = 0.03 and 0.02 respectively). There was no significant difference for in vitro mineralisation assays comparing oADSC with oOS‐ADSC, regardless of implant surface type. oADSC labelled with PKH26 were detected 1 month after surgery within the defect. There was no difference in bone regeneration between the bone defects treated with oADSC vs. just blood clot. Conclusion After 1‐month healing, the use of autologous oADSC did not improve bone regeneration in defects containing titanium devices with different surfaces.</description><subject>Adipose Tissue - cytology</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Animals</subject><subject>Assaying</subject><subject>Autografts</subject><subject>Biocompatibility</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>Blood coagulation</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone histomorphometry</subject><subject>bone implant interactions</subject><subject>Bone matrix</subject><subject>Bone Regeneration</subject><subject>bone substitutes</subject><subject>Bone surgery</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Culture Media, Serum-Free</subject><subject>Defects</subject><subject>Dental Implants</subject><subject>Dentistry</subject><subject>Devices</subject><subject>Disks</subject><subject>Extracellular matrix</subject><subject>Female</subject><subject>Femur</subject><subject>Femur - cytology</subject><subject>Femur - physiology</subject><subject>Healing</subject><subject>Histology</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Mineralization</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Sheep</subject><subject>Stem cells</subject><subject>Stem Cells - physiology</subject><subject>Surgical implants</subject><subject>Tissue culture</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Wounds</subject><issn>0905-7161</issn><issn>1600-0501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V-LFSEYBnCJoj1tXfQFQuimoNn11dHjXC6H_iwcCKKuxdF3Ti4zetKZsyzd9BH6jH2S3M7WRRAkgiI_HtSHkKfAzqCOczfmM-BrBffIChRjDZMM7pMV65hs1qDghDwq5YoxpjrdPSQnXGkppOQr8vUy0kM4JNqniDTjDiNmO4cUaZ1zmG0My0Q9HoLDQpcS4o4WzMv049v3ISPSXU7XkVof9qlgPfSYwwE9LTNO1OE4llc0VEDLZ8Q9HXBaMp2Sx_ExeTDYseCTu_WUfHrz-uPmXbN9__Zyc7FtnNAKGqdE7xCZFdr5um89E-1atUMre20Fa1tloT4MPYAYJHjnes314KHrOkQlTsmLY-4-py8LltlModzezEZMSzGglRZM1B_8D8qVkiA5q_T5X_QqLTnWhxjoOGsV51JW9fKoXE6lZBzMPofJ5hsDzNyWZ2p55ld51T67S1z6Cf0f-butCs6P4DqMePPvJLPZfjhG_gSTlaVQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Godoy Zanicotti, Diogo</creator><creator>Coates, Dawn Elizabeth</creator><creator>Duncan, Warwick John</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model</title><author>Godoy Zanicotti, Diogo ; Coates, Dawn Elizabeth ; Duncan, Warwick John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3861-c63bcee0a38cd63b4d034764f45b8a30446a1698ed113f51dccb828fd1999ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adipose Tissue - cytology</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Animals</topic><topic>Assaying</topic><topic>Autografts</topic><topic>Biocompatibility</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>Blood coagulation</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone histomorphometry</topic><topic>bone implant interactions</topic><topic>Bone matrix</topic><topic>Bone Regeneration</topic><topic>bone substitutes</topic><topic>Bone surgery</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Culture Media, Serum-Free</topic><topic>Defects</topic><topic>Dental Implants</topic><topic>Dentistry</topic><topic>Devices</topic><topic>Disks</topic><topic>Extracellular matrix</topic><topic>Female</topic><topic>Femur</topic><topic>Femur - cytology</topic><topic>Femur - physiology</topic><topic>Healing</topic><topic>Histology</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Mineralization</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Sheep</topic><topic>Stem cells</topic><topic>Stem Cells - physiology</topic><topic>Surgical implants</topic><topic>Tissue culture</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godoy Zanicotti, Diogo</creatorcontrib><creatorcontrib>Coates, Dawn Elizabeth</creatorcontrib><creatorcontrib>Duncan, Warwick John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical oral implants research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godoy Zanicotti, Diogo</au><au>Coates, Dawn Elizabeth</au><au>Duncan, Warwick John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model</atitle><jtitle>Clinical oral implants research</jtitle><addtitle>Clin Oral Implants Res</addtitle><date>2017-01</date><risdate>2017</risdate><volume>28</volume><issue>1</issue><spage>64</spage><epage>75</epage><pages>64-75</pages><issn>0905-7161</issn><eissn>1600-0501</eissn><abstract>Aim The aim of this study was to investigate the capacity of adipose‐derived stem cells (ADSC), grown in serum‐free conditions, to regenerate bone around titanium discs with different titanium surfaces. Material and methods Ovine ADSC (oADSC) were isolated from seven sheep and cultured using serum‐free and osteogenic conditions. Prior to in vivo testing, the growth and osteogenic behaviour of these cells were analysed in vitro using cell proliferation and extracellular matrix mineralisation assays. The bone regenerative capacity of autologous oADSC was evaluated in vivo on titanium discs in a sheep femur epicondyle model. Machined (MTi) and alumina‐blasted (ABTi) titanium discs were used. Bone regeneration within the defects was evaluated after 1 month using histology and histomorphometry. PKH26 cell‐tracking dye was used to verify the persistence of oADSC in the surgical wound. Results oADSC sourced from five of seven sheep differentiated into osteoblast‐like cells. Cellular proliferation was reduced only for osteogenically induced oADSC (oOS‐ADSC) grown on ABTi, compared to non‐induced oADSC grown on ABTi and tissue culture polystyrene (P = 0.03 and 0.02 respectively). There was no significant difference for in vitro mineralisation assays comparing oADSC with oOS‐ADSC, regardless of implant surface type. oADSC labelled with PKH26 were detected 1 month after surgery within the defect. There was no difference in bone regeneration between the bone defects treated with oADSC vs. just blood clot. Conclusion After 1‐month healing, the use of autologous oADSC did not improve bone regeneration in defects containing titanium devices with different surfaces.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26853552</pmid><doi>10.1111/clr.12761</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0905-7161
ispartof Clinical oral implants research, 2017-01, Vol.28 (1), p.64-75
issn 0905-7161
1600-0501
language eng
recordid cdi_proquest_miscellaneous_1868303127
source MEDLINE; Wiley Online Library All Journals
subjects Adipose Tissue - cytology
Aluminum
Aluminum oxide
Animals
Assaying
Autografts
Biocompatibility
biomaterials
Biomedical materials
Blood coagulation
Bone growth
Bone healing
Bone histomorphometry
bone implant interactions
Bone matrix
Bone Regeneration
bone substitutes
Bone surgery
Cell culture
Cell Differentiation
Cell Proliferation
Cells, Cultured
Culture Media, Serum-Free
Defects
Dental Implants
Dentistry
Devices
Disks
Extracellular matrix
Female
Femur
Femur - cytology
Femur - physiology
Healing
Histology
In vitro methods and tests
In vivo methods and tests
Mineralization
Polystyrene
Polystyrene resins
Regeneration
Regeneration (physiology)
Sheep
Stem cells
Stem Cells - physiology
Surgical implants
Tissue culture
Titanium
Titanium base alloys
Wounds
title In vivo bone regeneration on titanium devices using serum‐free grown adipose‐derived stem cells, in a sheep femur model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20bone%20regeneration%20on%20titanium%20devices%20using%20serum%E2%80%90free%20grown%20adipose%E2%80%90derived%20stem%20cells,%20in%20a%20sheep%20femur%20model&rft.jtitle=Clinical%20oral%20implants%20research&rft.au=Godoy%20Zanicotti,%20Diogo&rft.date=2017-01&rft.volume=28&rft.issue=1&rft.spage=64&rft.epage=75&rft.pages=64-75&rft.issn=0905-7161&rft.eissn=1600-0501&rft_id=info:doi/10.1111/clr.12761&rft_dat=%3Cproquest_cross%3E1826651520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920462255&rft_id=info:pmid/26853552&rfr_iscdi=true