Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways

Scope Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2017-02, Vol.61 (2), p.np-n/a
Hauptverfasser: Kim, Jisung, Lee, Siyoung, Choi, Bo‐Ryoung, Yang, Hee, Hwang, Youjin, Park, Jung Han Yoon, LaFerla, Frank M., Han, Jung‐Soo, Lee, Ki Won, Kim, Jiyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page np
container_title Molecular nutrition & food research
container_volume 61
creator Kim, Jisung
Lee, Siyoung
Choi, Bo‐Ryoung
Yang, Hee
Hwang, Youjin
Park, Jung Han Yoon
LaFerla, Frank M.
Han, Jung‐Soo
Lee, Ki Won
Kim, Jiyoung
description Scope Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Methods and results Mouse primary cortical neurons and a triple‐transgenic mouse model of Alzheimer's disease (3 × Tg‐AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD‐95 in primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. Conclusion These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. Proposed model for sulforaphane‐mediated epigenetic increase in neuronal BDNF expression and regulation of neurotrophic TrkB pathways. Sulforaphane inhibits HDAC activity and increases histone‐tail acetylation, thereby increasing BDNF levels and enhancing activation of BDNF‐TrkB signaling pathways. As a consequence, ERK facilitates neuronal differentiation and growth, Akt promotes survival of neurons, and CaMKII and CREB induce synaptic plasticity and LTP. Thus, an epigenetically increased level of BDNF may be responsible, at least in part, for the ability of sulforaphane to enhance neuronal and cognitive functions in BDNF‐deficient neuronal disorders such as Alzheimer's disease.
doi_str_mv 10.1002/mnfr.201600194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868300974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868300974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4679-495b52c2d3cf2b2f2a5330349c3db7db3fe4a11566895f15502ed50ed5d968303</originalsourceid><addsrcrecordid>eNqF0E9PwjAcBuDGaATRq0fTxIsXsP9Hj4qiJoiJ4sHT0m2_wXB0s2VBvr0lIAcvHpo27dM37YvQOSU9Sgi7Xtjc9RihihCqxQFqU0V5V1DOD_drJlvoxPs5IZwywY9Ri0URl5SpNvp4a8q8cqaeGQsY6mIKFpZFaspyjcGG3RQ8ttC4ypoS396Nhxi-awfeF5XFxmZ44j5vsS-m4bywU1yb5Wxl1v4UHeWm9HC2mzvofXg_GTx2Ry8PT4ObUTcVKtJdoWUiWcoynuYsYTkzknPChU55lkRZwnMQhlKpVF_LnEpJGGSShJFp1Q-yg662ubWrvhrwy3hR-BTKMnyoanxM-xtGdCQCvfxD51XjwruD0oxIESnOguptVeoq7x3kce2KhXHrmJJ4U3q8KT3elx4uXOxim2QB2Z7_thyA2IJVUcL6n7j4eTx8ZZHS_AcB_4zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920547632</pqid></control><display><type>article</type><title>Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Jisung ; Lee, Siyoung ; Choi, Bo‐Ryoung ; Yang, Hee ; Hwang, Youjin ; Park, Jung Han Yoon ; LaFerla, Frank M. ; Han, Jung‐Soo ; Lee, Ki Won ; Kim, Jiyoung</creator><creatorcontrib>Kim, Jisung ; Lee, Siyoung ; Choi, Bo‐Ryoung ; Yang, Hee ; Hwang, Youjin ; Park, Jung Han Yoon ; LaFerla, Frank M. ; Han, Jung‐Soo ; Lee, Ki Won ; Kim, Jiyoung</creatorcontrib><description>Scope Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Methods and results Mouse primary cortical neurons and a triple‐transgenic mouse model of Alzheimer's disease (3 × Tg‐AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD‐95 in primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. Conclusion These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. Proposed model for sulforaphane‐mediated epigenetic increase in neuronal BDNF expression and regulation of neurotrophic TrkB pathways. Sulforaphane inhibits HDAC activity and increases histone‐tail acetylation, thereby increasing BDNF levels and enhancing activation of BDNF‐TrkB signaling pathways. As a consequence, ERK facilitates neuronal differentiation and growth, Akt promotes survival of neurons, and CaMKII and CREB induce synaptic plasticity and LTP. Thus, an epigenetically increased level of BDNF may be responsible, at least in part, for the ability of sulforaphane to enhance neuronal and cognitive functions in BDNF‐deficient neuronal disorders such as Alzheimer's disease.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201600194</identifier><identifier>PMID: 27735126</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetylation ; AKT protein ; Alzheimer Disease - drug therapy ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Animals ; Brain ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - metabolism ; Brassica ; Ca2+/calmodulin-dependent protein kinase II ; Cells, Cultured ; Cerebral Cortex - cytology ; Chromatin ; Cyclic AMP response element-binding protein ; Differentiation ; Disease Models, Animal ; Disks Large Homolog 4 Protein - metabolism ; Disorders ; Epigenesis, Genetic - drug effects ; Female ; HDAC2 protein ; Histone deacetylase ; Histones - metabolism ; Hydrolysis ; Immunoprecipitation ; Inhibition ; Isothiocyanates - pharmacology ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Mice, Transgenic ; Microtubule-Associated Proteins - metabolism ; Neurodegenerative diseases ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Postsynaptic density proteins ; Promoters ; Protein-Tyrosine Kinases - metabolism ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Sulforaphane ; Synapses ; Synaptophysin ; Synaptophysin - metabolism ; Transgenic mice ; TrkB receptors ; Tyrosine kinase receptor B ; Vegetables</subject><ispartof>Molecular nutrition &amp; food research, 2017-02, Vol.61 (2), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4679-495b52c2d3cf2b2f2a5330349c3db7db3fe4a11566895f15502ed50ed5d968303</citedby><cites>FETCH-LOGICAL-c4679-495b52c2d3cf2b2f2a5330349c3db7db3fe4a11566895f15502ed50ed5d968303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201600194$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201600194$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27735126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jisung</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Choi, Bo‐Ryoung</creatorcontrib><creatorcontrib>Yang, Hee</creatorcontrib><creatorcontrib>Hwang, Youjin</creatorcontrib><creatorcontrib>Park, Jung Han Yoon</creatorcontrib><creatorcontrib>LaFerla, Frank M.</creatorcontrib><creatorcontrib>Han, Jung‐Soo</creatorcontrib><creatorcontrib>Lee, Ki Won</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><title>Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Methods and results Mouse primary cortical neurons and a triple‐transgenic mouse model of Alzheimer's disease (3 × Tg‐AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD‐95 in primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. Conclusion These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. Proposed model for sulforaphane‐mediated epigenetic increase in neuronal BDNF expression and regulation of neurotrophic TrkB pathways. Sulforaphane inhibits HDAC activity and increases histone‐tail acetylation, thereby increasing BDNF levels and enhancing activation of BDNF‐TrkB signaling pathways. As a consequence, ERK facilitates neuronal differentiation and growth, Akt promotes survival of neurons, and CaMKII and CREB induce synaptic plasticity and LTP. Thus, an epigenetically increased level of BDNF may be responsible, at least in part, for the ability of sulforaphane to enhance neuronal and cognitive functions in BDNF‐deficient neuronal disorders such as Alzheimer's disease.</description><subject>Acetylation</subject><subject>AKT protein</subject><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Brassica</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Chromatin</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Differentiation</subject><subject>Disease Models, Animal</subject><subject>Disks Large Homolog 4 Protein - metabolism</subject><subject>Disorders</subject><subject>Epigenesis, Genetic - drug effects</subject><subject>Female</subject><subject>HDAC2 protein</subject><subject>Histone deacetylase</subject><subject>Histones - metabolism</subject><subject>Hydrolysis</subject><subject>Immunoprecipitation</subject><subject>Inhibition</subject><subject>Isothiocyanates - pharmacology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred ICR</subject><subject>Mice, Transgenic</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Postsynaptic density proteins</subject><subject>Promoters</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Sulforaphane</subject><subject>Synapses</subject><subject>Synaptophysin</subject><subject>Synaptophysin - metabolism</subject><subject>Transgenic mice</subject><subject>TrkB receptors</subject><subject>Tyrosine kinase receptor B</subject><subject>Vegetables</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E9PwjAcBuDGaATRq0fTxIsXsP9Hj4qiJoiJ4sHT0m2_wXB0s2VBvr0lIAcvHpo27dM37YvQOSU9Sgi7Xtjc9RihihCqxQFqU0V5V1DOD_drJlvoxPs5IZwywY9Ri0URl5SpNvp4a8q8cqaeGQsY6mIKFpZFaspyjcGG3RQ8ttC4ypoS396Nhxi-awfeF5XFxmZ44j5vsS-m4bywU1yb5Wxl1v4UHeWm9HC2mzvofXg_GTx2Ry8PT4ObUTcVKtJdoWUiWcoynuYsYTkzknPChU55lkRZwnMQhlKpVF_LnEpJGGSShJFp1Q-yg662ubWrvhrwy3hR-BTKMnyoanxM-xtGdCQCvfxD51XjwruD0oxIESnOguptVeoq7x3kce2KhXHrmJJ4U3q8KT3elx4uXOxim2QB2Z7_thyA2IJVUcL6n7j4eTx8ZZHS_AcB_4zA</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Kim, Jisung</creator><creator>Lee, Siyoung</creator><creator>Choi, Bo‐Ryoung</creator><creator>Yang, Hee</creator><creator>Hwang, Youjin</creator><creator>Park, Jung Han Yoon</creator><creator>LaFerla, Frank M.</creator><creator>Han, Jung‐Soo</creator><creator>Lee, Ki Won</creator><creator>Kim, Jiyoung</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>201702</creationdate><title>Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways</title><author>Kim, Jisung ; Lee, Siyoung ; Choi, Bo‐Ryoung ; Yang, Hee ; Hwang, Youjin ; Park, Jung Han Yoon ; LaFerla, Frank M. ; Han, Jung‐Soo ; Lee, Ki Won ; Kim, Jiyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4679-495b52c2d3cf2b2f2a5330349c3db7db3fe4a11566895f15502ed50ed5d968303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylation</topic><topic>AKT protein</topic><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Brassica</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Chromatin</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Differentiation</topic><topic>Disease Models, Animal</topic><topic>Disks Large Homolog 4 Protein - metabolism</topic><topic>Disorders</topic><topic>Epigenesis, Genetic - drug effects</topic><topic>Female</topic><topic>HDAC2 protein</topic><topic>Histone deacetylase</topic><topic>Histones - metabolism</topic><topic>Hydrolysis</topic><topic>Immunoprecipitation</topic><topic>Inhibition</topic><topic>Isothiocyanates - pharmacology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred ICR</topic><topic>Mice, Transgenic</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Postsynaptic density proteins</topic><topic>Promoters</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Sulforaphane</topic><topic>Synapses</topic><topic>Synaptophysin</topic><topic>Synaptophysin - metabolism</topic><topic>Transgenic mice</topic><topic>TrkB receptors</topic><topic>Tyrosine kinase receptor B</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jisung</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Choi, Bo‐Ryoung</creatorcontrib><creatorcontrib>Yang, Hee</creatorcontrib><creatorcontrib>Hwang, Youjin</creatorcontrib><creatorcontrib>Park, Jung Han Yoon</creatorcontrib><creatorcontrib>LaFerla, Frank M.</creatorcontrib><creatorcontrib>Han, Jung‐Soo</creatorcontrib><creatorcontrib>Lee, Ki Won</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jisung</au><au>Lee, Siyoung</au><au>Choi, Bo‐Ryoung</au><au>Yang, Hee</au><au>Hwang, Youjin</au><au>Park, Jung Han Yoon</au><au>LaFerla, Frank M.</au><au>Han, Jung‐Soo</au><au>Lee, Ki Won</au><au>Kim, Jiyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2017-02</date><risdate>2017</risdate><volume>61</volume><issue>2</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope Brain‐derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Methods and results Mouse primary cortical neurons and a triple‐transgenic mouse model of Alzheimer's disease (3 × Tg‐AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD‐95 in primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg‐AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. Conclusion These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. Proposed model for sulforaphane‐mediated epigenetic increase in neuronal BDNF expression and regulation of neurotrophic TrkB pathways. Sulforaphane inhibits HDAC activity and increases histone‐tail acetylation, thereby increasing BDNF levels and enhancing activation of BDNF‐TrkB signaling pathways. As a consequence, ERK facilitates neuronal differentiation and growth, Akt promotes survival of neurons, and CaMKII and CREB induce synaptic plasticity and LTP. Thus, an epigenetically increased level of BDNF may be responsible, at least in part, for the ability of sulforaphane to enhance neuronal and cognitive functions in BDNF‐deficient neuronal disorders such as Alzheimer's disease.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27735126</pmid><doi>10.1002/mnfr.201600194</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2017-02, Vol.61 (2), p.np-n/a
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_miscellaneous_1868300974
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetylation
AKT protein
Alzheimer Disease - drug therapy
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer's disease
Animals
Brain
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - metabolism
Brassica
Ca2+/calmodulin-dependent protein kinase II
Cells, Cultured
Cerebral Cortex - cytology
Chromatin
Cyclic AMP response element-binding protein
Differentiation
Disease Models, Animal
Disks Large Homolog 4 Protein - metabolism
Disorders
Epigenesis, Genetic - drug effects
Female
HDAC2 protein
Histone deacetylase
Histones - metabolism
Hydrolysis
Immunoprecipitation
Inhibition
Isothiocyanates - pharmacology
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
Mice, Transgenic
Microtubule-Associated Proteins - metabolism
Neurodegenerative diseases
Neurons
Neurons - drug effects
Neurons - metabolism
Postsynaptic density proteins
Promoters
Protein-Tyrosine Kinases - metabolism
Rodents
Signal transduction
Signal Transduction - drug effects
Sulforaphane
Synapses
Synaptophysin
Synaptophysin - metabolism
Transgenic mice
TrkB receptors
Tyrosine kinase receptor B
Vegetables
title Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulforaphane%20epigenetically%20enhances%20neuronal%20BDNF%20expression%20and%20TrkB%20signaling%20pathways&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Kim,%20Jisung&rft.date=2017-02&rft.volume=61&rft.issue=2&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201600194&rft_dat=%3Cproquest_cross%3E1868300974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920547632&rft_id=info:pmid/27735126&rfr_iscdi=true