Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans

Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2017-04, Vol.474 (7), p.1293-1306
Hauptverfasser: Yao, Guangyin, Wan, Junhua, Liu, Qizheng, Mu, Chunhua, Wang, Yue, Sang, Jianli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306
container_issue 7
container_start_page 1293
container_title Biochemical journal
container_volume 474
creator Yao, Guangyin
Wan, Junhua
Liu, Qizheng
Mu, Chunhua
Wang, Yue
Sang, Jianli
description Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in cells. Phosphomimetic mutation of the three residues ( ) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the mutant also occurred in the mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in .
doi_str_mv 10.1042/BCJ20160889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1867546072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1867546072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</originalsourceid><addsrcrecordid>eNpNkMtKxTAQhoMoerys3EuWglQnSZumS613REV0XXKSiSfSm0m7OL6Bb2294mL4YfjmZ_gI2WVwyCDlRyflNQcmQalihcxYmkOicq5WyQy4TBMJnG2QzRhfAFgKKayTDa6YEoXKZuS9XOigzYDBv-nBdy3tHL3vFyJp0Ho9oKUW-0UXpwnL-g950DYT1I7Bt8-0wWGxrL9CtxjH2nXtdJr41o5maji9PaZWN_oZacBe-0B9S0vdWm811fXcG93GbbLmdB1x5ye3yNP52WN5mdzcXVyVxzeJ4aoYkkJaRCORcYWAPFWZE4ILkzubATdzOZepKMA4A597xVXGjHQOc3Ca5ZnYIvvfvX3oXkeMQ9X4aLCup9e7MVZMyTxLJeR8Qg--URO6GAO6qg--0WFZMag-3Vf_3E_03k_xOJ_k_bG_ssUHSaGAHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867546072</pqid></control><display><type>article</type><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</creator><creatorcontrib>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</creatorcontrib><description>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in cells. Phosphomimetic mutation of the three residues ( ) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the mutant also occurred in the mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in .</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20160889</identifier><identifier>PMID: 28183985</identifier><language>eng</language><publisher>England</publisher><subject>Candida albicans - drug effects ; Candida albicans - genetics ; Candida albicans - metabolism ; Cell Cycle Checkpoints - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Checkpoint Kinase 2 - genetics ; Checkpoint Kinase 2 - metabolism ; DNA Damage ; DNA Repair ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; Gene Expression Regulation, Fungal ; Methyl Methanesulfonate - pharmacology ; Phosphoprotein Phosphatases - deficiency ; Phosphoprotein Phosphatases - genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Serine - metabolism</subject><ispartof>Biochemical journal, 2017-04, Vol.474 (7), p.1293-1306</ispartof><rights>2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</citedby><cites>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28183985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Guangyin</creatorcontrib><creatorcontrib>Wan, Junhua</creatorcontrib><creatorcontrib>Liu, Qizheng</creatorcontrib><creatorcontrib>Mu, Chunhua</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Sang, Jianli</creatorcontrib><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in cells. Phosphomimetic mutation of the three residues ( ) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the mutant also occurred in the mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in .</description><subject>Candida albicans - drug effects</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - metabolism</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint Kinase 2 - genetics</subject><subject>Checkpoint Kinase 2 - metabolism</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Methyl Methanesulfonate - pharmacology</subject><subject>Phosphoprotein Phosphatases - deficiency</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Serine - metabolism</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtKxTAQhoMoerys3EuWglQnSZumS613REV0XXKSiSfSm0m7OL6Bb2294mL4YfjmZ_gI2WVwyCDlRyflNQcmQalihcxYmkOicq5WyQy4TBMJnG2QzRhfAFgKKayTDa6YEoXKZuS9XOigzYDBv-nBdy3tHL3vFyJp0Ho9oKUW-0UXpwnL-g950DYT1I7Bt8-0wWGxrL9CtxjH2nXtdJr41o5maji9PaZWN_oZacBe-0B9S0vdWm811fXcG93GbbLmdB1x5ye3yNP52WN5mdzcXVyVxzeJ4aoYkkJaRCORcYWAPFWZE4ILkzubATdzOZepKMA4A597xVXGjHQOc3Ca5ZnYIvvfvX3oXkeMQ9X4aLCup9e7MVZMyTxLJeR8Qg--URO6GAO6qg--0WFZMag-3Vf_3E_03k_xOJ_k_bG_ssUHSaGAHg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Yao, Guangyin</creator><creator>Wan, Junhua</creator><creator>Liu, Qizheng</creator><creator>Mu, Chunhua</creator><creator>Wang, Yue</creator><creator>Sang, Jianli</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><author>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Candida albicans - drug effects</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - metabolism</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint Kinase 2 - genetics</topic><topic>Checkpoint Kinase 2 - metabolism</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Methyl Methanesulfonate - pharmacology</topic><topic>Phosphoprotein Phosphatases - deficiency</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Serine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Guangyin</creatorcontrib><creatorcontrib>Wan, Junhua</creatorcontrib><creatorcontrib>Liu, Qizheng</creatorcontrib><creatorcontrib>Mu, Chunhua</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Sang, Jianli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Guangyin</au><au>Wan, Junhua</au><au>Liu, Qizheng</au><au>Mu, Chunhua</au><au>Wang, Yue</au><au>Sang, Jianli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>474</volume><issue>7</issue><spage>1293</spage><epage>1306</epage><pages>1293-1306</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in cells. Phosphomimetic mutation of the three residues ( ) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the mutant also occurred in the mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in .</abstract><cop>England</cop><pmid>28183985</pmid><doi>10.1042/BCJ20160889</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2017-04, Vol.474 (7), p.1293-1306
issn 0264-6021
1470-8728
language eng
recordid cdi_proquest_miscellaneous_1867546072
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Candida albicans - drug effects
Candida albicans - genetics
Candida albicans - metabolism
Cell Cycle Checkpoints - drug effects
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Checkpoint Kinase 2 - genetics
Checkpoint Kinase 2 - metabolism
DNA Damage
DNA Repair
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Deletion
Gene Expression Regulation, Fungal
Methyl Methanesulfonate - pharmacology
Phosphoprotein Phosphatases - deficiency
Phosphoprotein Phosphatases - genetics
Phosphorylation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Serine - metabolism
title Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Pph3-mediated%20dephosphorylation%20of%20Rad53%20during%20methyl%20methanesulfonate-induced%20DNA%20damage%20repair%20in%20Candida%20albicans&rft.jtitle=Biochemical%20journal&rft.au=Yao,%20Guangyin&rft.date=2017-04-01&rft.volume=474&rft.issue=7&rft.spage=1293&rft.epage=1306&rft.pages=1293-1306&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20160889&rft_dat=%3Cproquest_cross%3E1867546072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867546072&rft_id=info:pmid/28183985&rfr_iscdi=true