Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans
Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphor...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2017-04, Vol.474 (7), p.1293-1306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1306 |
---|---|
container_issue | 7 |
container_start_page | 1293 |
container_title | Biochemical journal |
container_volume | 474 |
creator | Yao, Guangyin Wan, Junhua Liu, Qizheng Mu, Chunhua Wang, Yue Sang, Jianli |
description | Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus
The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in
We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in
cells. Phosphomimetic mutation of the three residues (
) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the
mutant also occurred in the
mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in
. |
doi_str_mv | 10.1042/BCJ20160889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1867546072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1867546072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</originalsourceid><addsrcrecordid>eNpNkMtKxTAQhoMoerys3EuWglQnSZumS613REV0XXKSiSfSm0m7OL6Bb2294mL4YfjmZ_gI2WVwyCDlRyflNQcmQalihcxYmkOicq5WyQy4TBMJnG2QzRhfAFgKKayTDa6YEoXKZuS9XOigzYDBv-nBdy3tHL3vFyJp0Ho9oKUW-0UXpwnL-g950DYT1I7Bt8-0wWGxrL9CtxjH2nXtdJr41o5maji9PaZWN_oZacBe-0B9S0vdWm811fXcG93GbbLmdB1x5ye3yNP52WN5mdzcXVyVxzeJ4aoYkkJaRCORcYWAPFWZE4ILkzubATdzOZepKMA4A597xVXGjHQOc3Ca5ZnYIvvfvX3oXkeMQ9X4aLCup9e7MVZMyTxLJeR8Qg--URO6GAO6qg--0WFZMag-3Vf_3E_03k_xOJ_k_bG_ssUHSaGAHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867546072</pqid></control><display><type>article</type><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</creator><creatorcontrib>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</creatorcontrib><description>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus
The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in
We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in
cells. Phosphomimetic mutation of the three residues (
) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the
mutant also occurred in the
mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in
.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20160889</identifier><identifier>PMID: 28183985</identifier><language>eng</language><publisher>England</publisher><subject>Candida albicans - drug effects ; Candida albicans - genetics ; Candida albicans - metabolism ; Cell Cycle Checkpoints - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Checkpoint Kinase 2 - genetics ; Checkpoint Kinase 2 - metabolism ; DNA Damage ; DNA Repair ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Deletion ; Gene Expression Regulation, Fungal ; Methyl Methanesulfonate - pharmacology ; Phosphoprotein Phosphatases - deficiency ; Phosphoprotein Phosphatases - genetics ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Serine - metabolism</subject><ispartof>Biochemical journal, 2017-04, Vol.474 (7), p.1293-1306</ispartof><rights>2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</citedby><cites>FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28183985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Guangyin</creatorcontrib><creatorcontrib>Wan, Junhua</creatorcontrib><creatorcontrib>Liu, Qizheng</creatorcontrib><creatorcontrib>Mu, Chunhua</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Sang, Jianli</creatorcontrib><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus
The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in
We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in
cells. Phosphomimetic mutation of the three residues (
) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the
mutant also occurred in the
mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in
.</description><subject>Candida albicans - drug effects</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - metabolism</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint Kinase 2 - genetics</subject><subject>Checkpoint Kinase 2 - metabolism</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Methyl Methanesulfonate - pharmacology</subject><subject>Phosphoprotein Phosphatases - deficiency</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Serine - metabolism</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtKxTAQhoMoerys3EuWglQnSZumS613REV0XXKSiSfSm0m7OL6Bb2294mL4YfjmZ_gI2WVwyCDlRyflNQcmQalihcxYmkOicq5WyQy4TBMJnG2QzRhfAFgKKayTDa6YEoXKZuS9XOigzYDBv-nBdy3tHL3vFyJp0Ho9oKUW-0UXpwnL-g950DYT1I7Bt8-0wWGxrL9CtxjH2nXtdJr41o5maji9PaZWN_oZacBe-0B9S0vdWm811fXcG93GbbLmdB1x5ye3yNP52WN5mdzcXVyVxzeJ4aoYkkJaRCORcYWAPFWZE4ILkzubATdzOZepKMA4A597xVXGjHQOc3Ca5ZnYIvvfvX3oXkeMQ9X4aLCup9e7MVZMyTxLJeR8Qg--URO6GAO6qg--0WFZMag-3Vf_3E_03k_xOJ_k_bG_ssUHSaGAHg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Yao, Guangyin</creator><creator>Wan, Junhua</creator><creator>Liu, Qizheng</creator><creator>Mu, Chunhua</creator><creator>Wang, Yue</creator><creator>Sang, Jianli</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</title><author>Yao, Guangyin ; Wan, Junhua ; Liu, Qizheng ; Mu, Chunhua ; Wang, Yue ; Sang, Jianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-96deec6e128e0e2485f3323c7fd502cb6b64390cfc0332382851c6ffe70fa1753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Candida albicans - drug effects</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - metabolism</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint Kinase 2 - genetics</topic><topic>Checkpoint Kinase 2 - metabolism</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Methyl Methanesulfonate - pharmacology</topic><topic>Phosphoprotein Phosphatases - deficiency</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Serine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Guangyin</creatorcontrib><creatorcontrib>Wan, Junhua</creatorcontrib><creatorcontrib>Liu, Qizheng</creatorcontrib><creatorcontrib>Mu, Chunhua</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Sang, Jianli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Guangyin</au><au>Wan, Junhua</au><au>Liu, Qizheng</au><au>Mu, Chunhua</au><au>Wang, Yue</au><au>Sang, Jianli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>474</volume><issue>7</issue><spage>1293</spage><epage>1306</epage><pages>1293-1306</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus
The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in
We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in
cells. Phosphomimetic mutation of the three residues (
) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the
mutant also occurred in the
mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in
.</abstract><cop>England</cop><pmid>28183985</pmid><doi>10.1042/BCJ20160889</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2017-04, Vol.474 (7), p.1293-1306 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_proquest_miscellaneous_1867546072 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Candida albicans - drug effects Candida albicans - genetics Candida albicans - metabolism Cell Cycle Checkpoints - drug effects Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Checkpoint Kinase 2 - genetics Checkpoint Kinase 2 - metabolism DNA Damage DNA Repair Fungal Proteins - genetics Fungal Proteins - metabolism Gene Deletion Gene Expression Regulation, Fungal Methyl Methanesulfonate - pharmacology Phosphoprotein Phosphatases - deficiency Phosphoprotein Phosphatases - genetics Phosphorylation Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Serine - metabolism |
title | Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Pph3-mediated%20dephosphorylation%20of%20Rad53%20during%20methyl%20methanesulfonate-induced%20DNA%20damage%20repair%20in%20Candida%20albicans&rft.jtitle=Biochemical%20journal&rft.au=Yao,%20Guangyin&rft.date=2017-04-01&rft.volume=474&rft.issue=7&rft.spage=1293&rft.epage=1306&rft.pages=1293-1306&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20160889&rft_dat=%3Cproquest_cross%3E1867546072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867546072&rft_id=info:pmid/28183985&rfr_iscdi=true |